Олимпиадные задачи из источника «Московская математическая олимпиада» для 8 класса - сложность 3 с решениями

а) В футбольном турнире в один круг участвовало 75 команд. За победу в матче команда получала 3 очка, за ничью 1 очко, за поражение 0 очков. Известно, что каждые две команды набрали различное количество очков. Найдите наименьшую возможную разность очков у команд, занявших первое и последнее места.б) Тот же вопрос для <i>n</i> команд.

Рациональные числа <i>x, y</i> и <i>z</i> таковы, что все числа  <i>x + y</i>² + <i>z</i>²,  <i>x</i>² + <i>y</i> + <i>z</i>²  и  <i>x</i>² + <i>y</i>² + <i>z</i>  целые. Докажите, что число 2<i>x</i> целое.

В параллелограмме <i>ABCD</i> опустили перпендикуляр <i>BH</i> на сторону <i>AD</i>. На отрезке <i>BH</i> отметили точку <i>M</i>, равноудалённую от точек <i>C</i> и <i>D</i>. Пусть точка <i>K</i> – середина стороны <i>AB</i>. Докажите, что угол <i>MKD</i> прямой.

  а) Три богатыря едут верхом по кольцевой дороге против часовой стрелки. Могут ли они ехать неограниченно долго с различными постоянными скоростями, если на дороге есть только одна точка, в которой богатыри имеют возможность обгонять друг друга?

  А если богатырей

  б) десять?

  в) тридцать три?

Три спортсмена стартовали одновременно из точки <i>A</i> и бежали по прямой в точку <i>B</i> каждый со своей постоянной скоростью. Добежав до точки <i>B</i>, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке <i>A</i>. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от <i>A</i> до <i>B</i> равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м?

Можно ли так раскрасить все клетки бесконечной клетчатой плоскости в белый и чёрный цвета, чтобы каждая вертикальная прямая и каждая горизонтальная прямая пересекали конечное число белых клеток, а каждая наклонная прямая конечное число чёрных?

Дан такой выпуклый четырехугольник <i>ABCD</i>, что  <i>AB = BC</i>  и  <i>AD = DC</i>.  Точки <i>K, L</i> и <i>M</i> – середины отрезков <i>AB, CD</i> и <i>AC</i> соответственно. Перпендикуляр, проведенный из точки <i>A</i> к прямой <i>BC</i>, пересекается с перпендикуляром, проведенным из точки <i>C</i> к прямой <i>AD</i>, в точке <i>H</i>. Докажите, что прямые <i>KL</i> и <i>HM</i> перпендикулярны.

На доске выписано  (<i>n</i> – 1)<i>n</i>  выражений:   <i>x</i><sub>1</sub> – <i>x</i><sub>2</sub>,  <i>x</i><sub>1</sub> – <i>x</i><sub>3</sub>,  ...,  <i>x</i><sub>1</sub> – <i>x<sub>n</sub></i>,  <i>x</i><sub>2</sub> – <i>x</i><sub>1</sub>,  <i>x</i><sub>2</sub> – <i>x</i><sub>3</sub>,  ...,  <i>x</i><sub>2</sub> – <i>x<sub>n</sub></i>,  ...,  <i>x<sub>n</sub></i> – <i>x</i><sub><i>n</i>–1</sub>,   где  <i>n</i&...

На доске написаны три натуральных числа, не превосходящих 40. За один ход можно увеличить любое из написанных чисел на число процентов, равное одному из двух оставшихся чисел, если в результате получится целое число. Существуют ли такие исходные числа, что за несколько ходов одно из чисел на доске можно сделать больше 2011?

В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна <i>a</i>, а в каждом столбце сумма двух наибольших чисел равна <i>b</i>. Докажите, что  <i>a = b</i>.

Каждое звено несамопересекающейся ломаной состоит из нечётного числа сторон клеток квадрата 100×100, соседние звенья перпендикулярны.

Может ли ломаная пройти через все вершины клеток?

Дана функция <i>f</i>(<i>x</i>), значение которой при любом целом <i>x</i> целое. Известно, что для любого простого числа <i>p</i> существует такой многочлен <i>Q<sub>p</sub></i>(<i>x</i>) степени, не превышающей 2013, с целыми коэффициентами, что  <i>f</i>(<i>n</i>) – <i>Q<sub>p</sub></i>(<i>n</i>)  делится на <i>p</i> при любом целом <i>n</i>. Верно ли, что существует такой многочлен <i>g</i>(<i>x</i>) с вещественными коэффициентами , что  <i>g</i>(<i>n</i>) = <i>f</i>(<i>n</i>)  для любого целого <i>n</i>?

В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из <i>n</i> человек, команда математических – из <i>m</i>, причём  <i>n</i> ≠ <i>m</i>.  Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.

В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.

Дана незамкнутая несамопересекающаяся ломаная из 37 звеньев. Через каждое звено провели прямую.

Какое наименьшее число различных прямых могло получиться?

На окружности расставлены 2009 чисел, каждое из которых равно 1 или –1, причём не все числа одинаковые. Рассмотрим всевозможные десятки подряд стоящих чисел. Найдём произведения чисел в каждом десятке и сложим их. Какая наибольшая сумма может получиться?

У каждого жителя города Тьмутаракань есть свои тараканы, не у всех поровну. Два таракана являются <i>товарищами</i>, если у них общий хозяин (в частности, каждый таракан сам себе товарищ). Что больше: среднее количество тараканов, которыми владеет житель города, или среднее количество товарищей у таракана?

В треугольнике<i> ABC </i>точка<i> I </i> — центр вписанной окружности. Точки<i> M </i>и<i> N </i> — середины сторон<i> BC </i>и<i> AC </i>соответственно. Известно, что угол<i> AIN </i>прямой. Докажите, что угол <i> BIM </i> — также прямой.

Докажите, что при любых натуральных  0 <<i>k</i><<i>m < n</i>  числа  <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_2.gif">  и  <img align="absmiddle" src="/storage/problem-media/111922/problem_111922_img_3.gif">  не взаимно просты.

На кольцо свободно нанизано 2009 бусинок. За один ход любую бусинку можно передвинуть так, чтобы она оказалась ровно посередине между двумя соседними. Существуют ли такие изначальная расстановка бусинок и последовательность ходов, при которых какая-то бусинка пройдёт хотя бы один полный круг?

Квадрат разрезали на конечное число прямоугольников. Обязательно ли найдётся отрезок, соединяющий центры (точки пересечения диагоналей) двух прямоугольников, не имеющий общих точек ни с какими другими прямоугольниками, кроме этих двух?

<div align="center"><img src="/storage/problem-media/111915/problem_111915_img_2.gif"></div>Угол <i>B</i> при вершине равнобедренного треугольника <i>ABC</i> равен 120°. Из вершины <i>B</i> выпустили внутрь треугольника два луча под углом 60° друг к другу, которые, отразившись от основания <i>AC</i> в точках <i>P</i> и <i>Q</i>, попали на боковые стороны в точки <i>M</i> и <i>N</i> (см. рис.). Докажите, что площадь треугольника <i>PBQ</i> равна сумме площадей треугольников <i>AMP</i> и <i>CNQ</i>.

Двое играющих по очереди пишут – каждый на своей половине доски – по одному натуральному числу (повторения разрешаются) так, чтобы сумма всех чисел на доске не превосходила 10000. После того, как сумма всех чисел на доске становится равной 10000, игра заканчивается подсчетом суммы всех цифр на каждой половине. Выигрывает тот, на чьей половине сумма цифр меньше (при равных суммах – ничья). Может ли кто-нибудь из игроков выиграть, как бы ни играл противник?

Две точки на плоскости несложно соединить тремя ломаными так, чтобы получилось два равных многоугольника (например, как на рис.). Соедините две точки четырьмя ломаными так, чтобы все три получившихся многоугольника были равны. (Ломаные несамопересекающиеся и не имеют общих точек, кроме концов.) <div align="center"><img align="absmiddle" src="/storage/problem-media/111909/problem_111909_img_2.gif"> </div>

В каждой клетке квадрата 101<i>×</i>101, кроме центральной, стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает извне в произвольную клетку на границе квадрата, после чего ездит параллельно сторонам клеток, придерживаясь двух правил:

  1) в клетке со знаком "прямо" она продолжает путь в том же направлении;

  2) в клетке со знаком "поворот" она поворачивает на 90° (в любую сторону по своему выбору).

Центральную клетку квадрата занимает дом. Можно ли расставить знаки так, чтобы у машинки не было возможности врезаться в дом?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка