Олимпиадные задачи из источника «1962 год»

В шахматном турнире каждый участник сыграл с каждым из остальных одну партию.

Доказать, что участников можно так занумеровать, что окажется, что ни один участник не проиграл непосредственно за ним следующему.

Как надо расположить в пространстве прямоугольный параллелепипед, чтобы площадь его проекции на горизонтальную плоскость была наибольшей?

На данной прямой<i>l</i>, проходящей через центр<i>O</i>данной окружности, фиксирована точка<i>C</i>(расположенная внутри окружности — прим. ред.). Точки<i>A</i>и<i>A'</i>расположены на окружности по одну сторону от<i>l</i>так, что углы, образованные прямыми<i>AC</i>и<i>A'C</i>с прямой<i>l</i>, равны. Обозначим через<i>B</i>точку пересечения прямых<i>AA'</i>и<i>l</i>. Доказать, что положение точки<i>B</i>не зависит от точки<i>A</i>.

Даны 2<sup>n</sup>конечных последовательностей из нулей и единиц, причём ни одна из них не является началом никакой другой. Доказать, что сумма длин этих последовательностей не меньше<i>n</i><sup> . </sup>2<sup>n</sup>.

Стороны выпуклого многоугольника, периметр которого равен 12, отодвигаются на расстояние<i>d</i>= 1 во внешнюю сторону. Доказать, что площадь многоугольника увеличится по крайней мере на 15.

Как надо расположить числа  1, 2, ..., 2<i>n</i>  в последовательности  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>2<i>n</i></sub>,  чтобы сумма  |<i>a</i><sub>1</sub> – <i>a</i><sub>2</sub>| + |<i>a</i><sub>2</sub> – <i>a</i><sub>3</sub>| + ... + |<i>a</i><sub>2<i>n</i>–1</sub> – <i>a</i><sub>2<i>n</i></sub>| + |<i>a</i><sub>2<i>n</i></sub> – <i>a</i><sub>1</sub>|  была наибольшей?

Школьник в течение учебного года должен решать ровно по 25 задач за каждые идущие подряд 7 дней. Время, необходимое на решение одной задачи (любой), не меняется в течение дня, но меняется в течение учебного года по известному школьнику закону и всегда меньше 45 минут. Школьник хочет затратить на решение задач в общей сложности наименьшее время. Доказать, что для этого он может выбрать некоторый день недели и в этот день (каждую неделю) решать по 25 задач.

Две окружности<i>O</i><sub>1</sub>и<i>O</i><sub>2</sub>пересекаются в точках<i>M</i>и<i>P</i>. Обозначим через<i>MA</i>хорду окружности<i>O</i><sub>1</sub>, касающуюся окружности<i>O</i><sub>2</sub>в точке<i>M</i>, а через<i>MB</i>— хорду окружности<i>O</i><sub>2</sub>, касающуюся окружности<i>O</i><sub>1</sub>в точке<i>M</i>. На прямой<i>MP</i>отложен отрезок<i>PH</i>=<i>MP</i>. Доказать, что четырёхугольник<i>MAHB</i>можно вписать в окружность.

Из чисел<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>,<i>x</i><sub>3</sub>,<i>x</i><sub>4</sub>,<i>x</i><sub>5</sub>можно образовать десять попарных сумм; обозначим их через<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ...,<i>a</i><sub>10</sub>. Доказать, что зная числа<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ...,<i>a</i><sub>10</sub>(но не зная, разумеется, суммой каких именно двух чисел является каждое из них), можно восстановить числа<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>,<i>x...

В окружность вписан неправильный <i>n</i>-угольник, который при повороте окружности около центра на некоторый угол  α ≠ 2π   совмещается сам с собой. Доказать, что <i>n</i> – число составное.

Как надо расположить числа 1, 2, ..., 1962 в последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>1962</sub>, чтобы сумма  |<i>a</i><sub>1</sub> – <i>a</i><sub>2</sub>| + |<i>a</i><sub>2</sub> – <i>a</i><sub>3</sub>| + ... + |<i>a</i><sub>1961</sub> – <i>a</i><sub>1962</sub>| + |<i>a</i><sub>1962</sub> – <i>a</i><sub>1</sub>|  была наибольшей?

Проведём в выпуклом многоугольнике некоторые диагонали так, что никакие две из них не пересекаются (из одной вершины могут выходить несколько диагоналей). Доказать, что найдутся по крайней мере две вершины многоугольника, из которых не проведено ни одной диагонали.

На плоскости даны 25 точек; известно, что из любых трёх точек можно выбрать две, расстояние между которыми меньше 1. Доказать, что среди данных точек найдутся 13, лежащие в круге радиуса 1.

Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное.

"Уголком" называется фигура, составленная из трёх квадратов со стороной 1 в виде буквы "Г".

Доказать, что прямоугольник размерами 1961×1963 нельзя разбить на уголки, а прямоугольник размерами 1963×1965 – можно.

<i>ABC</i> – равнобедренный треугольник;  <i>AB = BC,  BH</i> – высота, <i>M</i> – середина стороны <i>AB, K</i> – точка пересечения <i>BH</i> с описанной окружностью треугольника <i>BMC</i>. Доказать, что  <i>BK</i> = <sup>3</sup>/<sub>2</sub> <i>R</i>,  где <i>R</i> – радиус описанной окружности треугольника <i>ABC</i>.

У края биллиарда, имеющего форму правильного 2<i>n</i>-угольника, стоит шар. Как надо пустить шар от борта, чтобы он, отразившись последовательно от всех бортов, вернулся в ту же точку? (При отражении углы падения и отражения равны.) Доказать, что при этом длина пути шара не зависит от выбора начальной точки.

Доказать, что любое натуральное число можно представить в виде суммы нескольких различных членов последовательности 1, 2, 3, 5, 8, 13, ...,<i>a</i><sub>n</sub>=<i>a</i><sub>n - 1</sub>+<i>a</i><sub>n - 2</sub>,....

На сторонах квадрата, как на основаниях, построены во внешнюю сторону равные равнобедренные треугольники с острым углом при вершине. Доказать, что получившуюся фигуру нельзя разбить на параллелограммы.

Даны два пересекающихся луча<i>AС</i>и<i>BD</i>. На этих лучах выбираются точки<i>M</i>и<i>N</i>(соответственно) так, что<i>AM</i>=<i>BN</i>. Найти положение точек<i>M</i>и<i>N</i>, при котором длина отрезка<i>MN</i>минимальна.

Доказать, что в прямоугольнике площади 1 можно расположить непересекающиеся круги так, чтобы сумма их радиусов была равна 1962.

Дана система уравнений:

    <img width="20" height="111" align="MIDDLE" border="0" src="/storage/problem-media/78282/problem_78282_img_2.gif"><img width="247" height="111" align="MIDDLE" border="0" src="/storage/problem-media/78282/problem_78282_img_3.gif">

Какие значения может принимать <i>x</i><sub>25</sub>?

<i>Конём</i> называется фигура, ход которой состоит в перемещении на <i>n</i> клеток по горизонтали и на 1 по вертикали (или наоборот). Конь стоит на некотором поле бесконечной шахматной доски. При каких <i>n</i> он может попасть на любое заданное поле?

Даны два пересекающихся отрезка<i>AС</i>и<i>BD</i>. На этих лучах выбираются точки<i>M</i>и<i>N</i>(соответственно) так, что<i>AM</i>=<i>BN</i>. Найти положение точек<i>M</i>и<i>N</i>, при котором длина отрезка<i>MN</i>минимальна (сравните с<a href="http://www.problems.ru/view_problem_details_new.php?id=78284">задачей 1 для 10 класса</a>).

Доказать, что для любого целого<i>d</i>найдутся такие целые<i>m</i>,<i>n</i>, что<div align="CENTER"> <i>d</i> = $\displaystyle {\frac{n-2m+1}{m^2-n}}$. </div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка