Олимпиадные задачи из источника «1987 год»

В некотором царстве, территория которого имеет форму квадрата со стороной 2 км, царь решает созвать всех жителей к 7 ч вечера к себе во дворец на бал. Для этого он в полдень посылает с поручением гонца, который может передать любое указание любому жителю, который в свою очередь может передать любое указание любому другому жителю и т.д. Каждый житель до поступления указания находится в известном месте (у себя дома) и может передвигаться со скоростью 3 км/ч в любом направлении (по прямой). Доказать, что царь может организовать оповещение так, чтобы все жители успели прийти к началу бала.

Можно ли разбить множество целых чисел на три подмножества так, чтобы для любого целого значения<i>n</i>числа<i>n</i>,<i>n</i>- 50,<i>n</i>+ 1987 принадлежали трём разным подмножествам?

Углы, образованные сторонами правильного треугольника с некоторой плоскостью, равны α, β и γ. Доказать, что одно из чисел sin α, sin β, sin γ равно сумме двух других.

а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два числа <i>x</i> и <i>y</i>, что  0 ≤ <img width="38" height="35" align="MIDDLE" border="0" src="/storage/problem-media/79520/problem_79520_img_2.gif"> ≤ 1.

б) Верно ли, что указанные два числа можно выбрать из любых четырёх чисел?

Доказать, что для любых чисел  <i>a</i><sub>1</sub>, ..., <i>a</i><sub>1987</sub>  и положительных чисел  <i>b</i><sub>1</sub>,..., <i>b</i><sub>1987</sub>  справедливо неравенство <div align="CENTER"><img width="135" height="55" align="MIDDLE" border="0" src="/storage/problem-media/79518/problem_79518_img_2.gif"> ≤ <img width="23" height="55" align="MIDDLE" border="0" src="/storage/problem-media/79518/problem_79518_img_3.gif"> + ... + <img width="43" height="55" align="MIDDLE" border="0" src="/storage/problem-media/79518...

Найти такие 50 натуральных чисел, что ни одно из них не делится на другое, а произведение каждых двух из них делится на любое из оставшихся чисел.

Даны 7 различных цифр. Доказать, что для любого натурального числа<i>n</i>найдётся пара данных цифр, сумма которых оканчивается той же цифрой, что и число.

Можно ли выбрать некоторые натуральные числа так, чтобы при любом натуральном значении<i>n</i>хотя бы одно из чисел<i>n</i>,<i>n</i>+ 50 было выбрано и хотя бы одно из чисел<i>n</i>,<i>n</i>+ 1987 не было выбрано?

В выпуклом пятиугольнике <i>ABCDE</i> углы при вершинах <i>B</i> и <i>D</i> – прямые,  ∠<i>BCA</i> = ∠<i>DCE</i>,  а точка <i>M</i> – середина стороны <i>AE</i>. Доказать, что  <i>MB = MD</i>.

В классе организуется турнир по перетягиванию каната. В турнире ровно по одному разу должны участвовать всевозможные команды, которые можно составить из учащихся этого класса (кроме команды всего класса). Доказать, что каждая команда учащихся будет соревноваться с командой всех остальных учащихся класса.

Школьник хочет вырезать из квадрата размером2<i>n</i>×2<i>n</i>наибольшее количество прямоугольников размером1×(<i>n</i>+ 1). Найти это количество для каждого натурального значения<i>n</i>.

Доказать, что если  <i>a > b</i> > 0  и  <sup><i>x</i></sup>/<sub><i>a</i></sub> < <sup><i>y</i></sup>/<sub><i>b</i></sub>,  то справедливо неравенство   <img align="absMIDDLE" src="/storage/problem-media/79510/problem_79510_img_2.gif">

Пусть<i>AB</i>— основание трапеции<i>ABCD</i>. Доказать, что если<i>AC</i>+<i>BC</i>=<i>AD</i>+<i>BD</i>, то трапеция<i>ABCD</i>— равнобокая.

По поляне, имеющей форму равностороннего треугольника со стороной 100 м, бегает волк. Охотник убивает волка, если стреляет в него с расстояния не более 30 м. Доказать, что охотник может убить волка, как бы быстро тот ни бегал.

Доказать, что из любых 27 различных натуральных чисел, меньших 100, можно выбрать два числа, не являющихся взаимно простыми.

В марте 1987 года учитель решил провести 11 занятий математического кружка. Доказать, что если по субботам и воскресеньям кружок не проводить, то в марте найдутся три дня подряд, в течение которых не будет ни одного занятия кружка.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка