Олимпиадные задачи по теме «Алгебраические неравенства и системы неравенств»
Алгебраические неравенства и системы неравенств
НазадНайдите наибольшее значение выражения <i>х + у</i>, если <img align="absmiddle" src="/storage/problem-media/116997/problem_116997_img_2.gif"> <i>x</i> ∈ [0, <sup>3π</sup>/<sub>2</sub>], <i>y</i> ∈ [π, 2π].
Найдите наибольшее значение выражения <i>ab + bc + ac + abc</i>, если <i>a + b + c</i> = 12 (<i>a, b</i> и <i>с</i> – неотрицательные числа).
Найдите все пары простых чисел <i>p</i> и <i>q</i>, обладающие следующим свойством: 7<i>p</i> + 1 делится на <i>q</i>, а 7<i>q</i> + 1 делится на <i>p</i>.
Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?
Решите уравнение: <img align="absmiddle" src="/storage/problem-media/116928/problem_116928_img_2.gif">.
Сравните: sin 3 и sin 3°.
На карточках записаны числа 415, 43, 7, 8, 74, 3 (см. рисунок). Расположите карточки в ряд так, чтобы получившееся десятизначное число было наименьшим из возможных. <div align="center"><img src="/storage/problem-media/116858/problem_116858_img_2.gif"></div>
Докажите, что если <i>а</i> > 0, <i>b</i> > 0, <i>c</i> > 0 и <i>аb + bc + ca</i> ≥ 12, то <i>a + b + c</i> ≥ 6.
Какое из чисел больше: 1 – 2 + 3 – 4 + 5 – ... + 99 – 100 или 1 + 2 – 3 + 4 – 5 + 6 – ... – 99 + 100?
Каждые два из действительных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>a</i><sub>4</sub>, <i>a</i><sub>5</sub> отличаются не менее чем на 1. Оказалось, что для некоторого действительного <i>k</i> выполнены равенства <img align="absmiddle" src="/storage/problem-media/116765/problem_116765_img_2.gif"> Докажите, что <i>k</i>² ≥ <sup>25</sup>/<sub>3</sub>.
Положительные действительные числа <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> и <i>k</i> таковы, что <i>a</i><sub>1</sub> + ... + <i>a<sub>n</sub></i> = 3<i>k</i>, <img align="absmiddle" src="/storage/problem-media/116758/problem_116758_img_2.gif"> и <img align="absmiddle" src="/storage/problem-media/116758/problem_116758_img_3.gif"> .
Докажите, что какие-то два из чисел <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> отличаются больше чем на 1.
Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем <img align="absmiddle" src="/storage/problem-media/116727/problem_116727_img_2.gif"> .
Для <i>n</i> = 1, 2, 3 будем называть числом <i>n</i>-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию
1, (<i>n</i> + 2), (<i>n</i> + 2)², ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.
Натуральные числа <i>d</i> и <i>d' > d</i> – делители натурального числа <i>n</i>. Докажите, что <i>d' > d</i> + <sup><i>d</i>²</sup>/<sub><i>n</i></sub>.
Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?
Решите неравенство: [<i>x</i>]·{<i>x</i>} < <i>x</i> – 1.
Докажите, что для любого натурального <i>n</i> выполнено неравенство (<i>n</i> – 1)<sup><i>n</i>+1</sup>(<i>n</i> + 1)<sup><i>n</i>–1</sup> < <i>n</i><sup>2<i>n</i></sup>.
Даны десять положительных чисел, каждые два из которых различны. Докажите, что среди них найдутся либо три числа, произведение которых больше произведения каких-нибудь двух из оставшихся, либо три числа, произведение которых больше произведения каких-нибудь четырёх из оставшихся.
Числа <i>a</i> и <i>b</i> таковы, что <i>a</i>³ – <i>b</i>³ = 2, <i>a</i><sup>5</sup> – <i>b</i><sup>5</sup> ≥ 4. Докажите, что <i>a</i>² + <i>b</i>² ≥ 2.
Целые числа <i>a</i> и <i>b</i> таковы, что при любых натуральных <i>m</i> и <i>n</i> число <i>am</i>² + <i>bn</i>² является точным квадратом. Докажите, что <i>ab</i> = 0.
На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске?
Даны 11 гирь разного веса (одинаковых нет), каждая весит целое число граммов. Известно, что как ни разложить гири (все или часть) на две чаши, чтобы гирь на них было не поровну, всегда перевесит чаша, на которой гирь больше. Докажите, что хотя бы одна из гирь весит более 35 граммов.
Даны положительные числа <i>b</i> и <i>c</i>. Докажите неравенство (<i>b</i> – <i>c</i>)<sup>2011</sup>(<i>b</i> + <i>c</i>)<sup>2011</sup>(<i>c</i> – <i>b</i>)<sup>2011</sup> ≥ (<i>b</i><sup>2011</sup> – <i>c</i><sup>2011</sup>)(<i>b</i><sup>2011</sup> + <i>c</i><sup>2011</sup>)(<i>c</i><sup>2011</sup> – <i>b</i><sup>2011</sup>).
Даны 2011 ненулевых целых чисел. Известно, что сумма любого из них с произведением оставшихся 2010 чисел отрицательна. Докажите, что если произвольным образом разбить все данные числа на две группы и перемножить числа в группах, то сумма двух полученных произведений также будет отрицательной.
Даны различные натуральные числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>14</sub>. На доску выписаны все 196 чисел вида <i>a<sub>k</sub></i> + <i>a<sub>l</sub></i>, где 1 ≤ <i>k</i>, <i>l</i> ≤ 14. Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?