Олимпиадные задачи из источника «1955 год»

Дан треугольник<i>A</i><sub>0</sub><i>B</i><sub>0</sub><i>C</i><sub>0</sub>. На его сторонах<i>A</i><sub>0</sub><i>B</i><sub>0</sub>,<i>B</i><sub>0</sub><i>C</i><sub>0</sub>,<i>C</i><sub>0</sub><i>A</i><sub>0</sub>взяты точки<i>C</i><sub>1</sub>,<i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>соответственно. На сторонах<i>A</i><sub>1</sub><i>B</i><sub>1</sub>,<i>B</i><sub>1</sub><i>C</i><sub>1</sub>,<i>C</i>...

Имеется 1955 точек. Какое максимальное число троек можно из них выбрать так, чтобы каждые две тройки имели ровно одну общую точку?

На плоскости<i>P</i>стоит прямой круговой конус. Радиус основания<i>r</i>, высота —<i>h</i>. На расстоянии<i>H</i>от плоскости и<i>l</i>от высоты конуса находится источник света. Какую часть окружности радиуса<i>R</i>, лежащей в плоскости<i>P</i>и концентрической с окружностью, лежащей в основании конуса, осветит этот источник?

Доказать, что если  <sup><i>p</i></sup>/<sub><i>q</i></sub> – несократимая рациональная дробь, являющаяся корнем полинома  <i>f</i>(<i>x</i>) с целыми коэффициентами, то  <i>p – kq</i>  есть делитель числа  <i>f</i>(<i>k</i>) при любом целом <i>k</i>.

Пять человек играют несколько партий в домино (два на два) так, что каждый играющий имеет каждого из остальных один раз партнёром и два раза противником. Найти количество сыгранных партий и все способы распределения играющих.

Дано уравнение  <i>x<sup>n</sup> – a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> – <i>a</i><sub>2</sub><i>x</i><sup><i>n</i>–2</sup> – ... – <i>a</i><sub><i>n</i>–1</sub><i>x – a<sub>n</sub></i> = 0,  где  <i>a</i><sub>1</sub> ≥ 0,  <i>a</i><sub>2</sub> ≥ 0,  <i>a<sub>n</sub></i> ≥ 0.

Доказать, что это уравнение не может иметь двух положительных корней.

Расположить на прямой систему отрезков длины 1, не имеющих общих концов и общих точек так, чтобы бесконечная арифметическая прогрессия с любой разностью и любым начальным членом имела общую точку с некоторым отрезком системы.

Дан треугольник <i>ABC</i>. На сторонах <i>AB, BC, CA</i> взяты соответственно точки <i>C</i><sub>1</sub>, <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> так, что  <i>AC</i><sub>1</sub> : <i>C</i><sub>1</sub><i>B = BA</i><sub>1</sub> : <i>A</i><sub>1</sub><i>C = CB</i><sub>1</sub> : <i>B</i><sub>1</sub><i>A</i> = 1 : <i>n</i>.  На сторонах <i>A</i><sub>1</sub><i>B</i><sub>1</sub>, <i>B</i><sub>1</sub><i>C</i><sub>1</sub>, <i>C</i&g...

Числа [<i>a</i>], [2<i>a</i>], ..., [<i>Na</i>] различны между собой, и числа$\left[\vphantom{\frac{1}{a}}\right.$${\frac{1}{a}}$$\left.\vphantom{\frac{1}{a}}\right]$,$\left[\vphantom{\frac{2}{a}}\right.$${\frac{2}{a}}$$\left.\vphantom{\frac{2}{a}}\right]$, ...,$\left[\vphantom{\frac{M}{a}}\right.$${\frac{M}{a}}$$\left.\vphantom{\frac{M}{a}}\right]$тоже различны между собой. Найти все такие<i>a</i>.

Неравенство<div align="CENTER"> <i>Aa</i>(<i>Bb</i> + <i>Cc</i>) + <i>Bb</i>(<i>Cc</i> + <i>Aa</i>) + <i>Cc</i>(<i>Aa</i> + <i>Bb</i>) > $\displaystyle {\textstyle\frac{1}{2}}$(<i>ABc</i><sup>2</sup> + <i>BCa</i><sup>2</sup> + <i>CAb</i><sup>2</sup>), </div>где<i>a</i>> 0,<i>b</i>> 0,<i>c</i>> 0 — данные числа, выполняется для всех<i>A</i>> 0,<i>B</i>> 0,<i>C</i>> 0. Можно ли из отрезков<i>a</i>,<i>b</i>,<i>c</i>составить треугольник?

Точка <i>O</i> лежит внутри выпуклого <i>n</i>-угольника <i>A</i><sub>1</sub>...<i>A<sub>n</sub></i> и соединена отрезками с вершинами. Стороны <i>n</i>-угольника нумеруются числами от 1 до <i>n</i>, разные стороны нумеруются разными числами. То же самое делается с отрезками <i>OA</i><sub>1</sub>, ..., <i>OA<sub>n</sub></i>.

  а) При  <i>n</i> = 9  найти нумерацию, при которой сумма номеров сторон для всех треугольников <i>A</i><sub>1</sub><i>OA</i><sub>2</sub>, ..., <i>A<sub>n</sub></i><i>OA</i><sub>1</sub> одинакова.

  б) Доказать, чт...

Две окружности касаются друг друга внешним образом и третьей изнутри. Проводятся внешняя и внутренняя общие касательные к первым двум окружностям. Доказать, что внутренняя касательная делит пополам дугу, отсекаемую внешней касательной на третьей окружности.

Трёхчлен  <i>ax</i>² + <i>bx + c</i>  при всех целых <i>x</i> является точным квадратом. Доказать, что тогда  <i>ax</i>² + <i>bx + c</i> = (<i>dx + e</i>)².

В турнире собираются принять участие 25 шахматистов. Все они играют в разную силу, и при встрече всегда побеждает сильнейший.

Какое наименьшее число партий требуется, чтобы определить двух сильнейших игроков?

Дан$\Delta$<i>ABC</i>. Центры вневписанных окружностей<i>O</i><sub>1</sub>,<i>O</i><sub>2</sub>и<i>O</i><sub>3</sub>соединены прямыми. Доказать, что$\Delta$<i>O</i><sub>1</sub><i>O</i><sub>2</sub><i>O</i><sub>3</sub>— остроугольный.

Трёхчлен  <i>ax</i>² + <i>bx + c</i>  при всех целых <i>x</i> является точной четвёртой степенью. Доказать, что тогда  <i>a = b</i> = 0.

Решить в целых числах уравнение  <i>x</i>³ – 2<i>y</i>³ – 4<i>z</i>³ = 0.

Дан трехгранный угол с вершиной<i>O</i>. Можно ли найти такое плоское сечение<i>ABC</i>, чтобы углы<i>OAB</i>,<i>OBA</i>,<i>OBC</i>,<i>OCB</i>,<i>OAC</i>,<i>OCA</i>были острыми?

На плоскости даны две прямые, пересекающиеся под острым углом. В направлении одной из прямых производится сжатие с коэффициентом 1/2. Доказать, что найдется точка, расстояние от которой до точки пересечения прямых увеличится.

Квадратная таблица в <i>n</i>² клеток заполнена числами от 1 до <i>n</i> так, что в каждой строке и каждом столбце встречаются все эти числа. Если <i>n</i> нечётно и таблица симметрична относительно диагонали, идущей из левого верхнего угла в правый нижний, то на этой диагонали встретятся все эти числа 1, 2, 3,..., <i>n</i>. Доказать.

Дан$\Delta$<i>ABC</i>и точка<i>D</i>внутри него, причем<i>AC</i>-<i>DA</i>> 1 и<i>BC</i>-<i>BD</i>> 1. Берётся произвольная точка<i>E</i>внутри отрезка<i>AB</i>. Доказать, что<i>EC</i>-<i>ED</i>> 1.

<i>p</i> простых чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>p</sub></i> образуют возрастающую арифметическую прогрессию и  <i>a</i><sub>1</sub> > <i>p</i>.

Доказать, что если <i>p</i> – простое число, то разность прогрессии делится на <i>p</i>.

Найти все действительные решения системы

   <i>x</i>³ + <i>y</i>³ = 1,

   <i>x</i><sup>4</sup> + <i>y</i><sup>4</sup> = 1.

Найти геометрическое место середин отрезков с концами на двух различных непересекающихся окружностях, лежащих одна вне другой.

Числа 1, 2, ..., <i>k</i>² расположены в квадратную таблицу <div align="center"><img src="/storage/problem-media/78034/problem_78034_img_2.gif"></div>Произвольное число выписывается, после чего из таблицы вычеркивается строка и столбец, содержащие это число. То же самое проделывается с оставшейся таблицей из  (<i>k</i>– 1)²  чисел и т.д.<i>k</i>раз. Найти сумму выписанных чисел.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка