Олимпиадные задачи из источника «1961 год»

Дан произвольный набор из +1 и -1 длиной 2<sup>k</sup>. Из него получается новый по следующему правилу: каждое число умножается на следующее за ним; последнее 2<sup>k</sup>-тое число умножается на первое. С новым набором из 1 и -1 проделывается то же самое и т.д.

Доказать, что в конце концов получается набор, состоящий из одних единиц.

Расстояние от фиксированной точки<i>P</i>плоскости до двух вершин<i>A</i>,<i>B</i>равностороннего треугольника<i>ABC</i>равны<i>AP</i>= 2;<i>BP</i>= 3. Определить, какое максимальное значение может иметь отрезок<i>PC</i>.

В прямоугольник со сторонами 20 и 25 бросают 120 квадратов со стороной

  1. Доказать, что в прямоугольник можно поместить круг диаметра 1, не пересекающийся ни с одним из квадратов.

Доказать, что для любых трёх бесконечных последовательностей натуральных чисел<div align="CENTER"> <table> <tr valign="MIDDLE"><td align="RIGHT"><i>a</i><sub>1</sub>...</td> <td align="CENTER"><i>a</i><sub>n</sub></td> <td align="LEFT">...</td> </tr> <tr valign="MIDDLE"><td align="RIGHT"><i>b</i><sub>1</sub>...</td> <td align="CENTER"><i>b</i><sub>n</sub></td> <td align="LEFT">...</td> </tr> <tr valign="MIDDLE"><td align="RIGHT"><i>c</i><sub>1</sub&...

Коля и Петя делят 2<i>n</i>+ 1 орехов,<i>n</i>$\ge$2, причём каждый хочет получать возможно больше. Предполагаются три способа дележа (каждый проходит в три этапа).

1-й этап: Петя делит все орехи на две части, в каждой не меньше двух орехов.

2-й этап: Коля делит каждую часть снова на две, в каждой не меньше одного ореха.

1-й и 2-й этапы общие для всех трёх способов.

3-й этап: При первом способе Коля берёт большую и меньшую части;

При втором способе Коля берёт обе средние части;

При третьем способе Коля берёт либо большую и меньшую части, либо обе средние части, но за право выбора отдаёт Пете один орех.

Определить, какой способ самый выгодный для Коли и какой наименее выгоден для него.

<i>a, b, p</i> – любые целые числа. Доказать, что найдутся такие взаимно простые <i>k, l</i>, что  <i>ak + bl</i>  делится на <i>p</i>.

<i>n</i> точек соединены отрезками так, что каждая точка с чем-нибудь соединена и нет таких двух точек, которые соединялись бы двумя разными путями.

Доказать, что общее число отрезков равно  <i>n</i> – 1.

В клетки таблицы <i>m×n</i> вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны.

Точки<i>A</i>и<i>B</i>движутся равномерно и с равными угловыми скоростями по окружностям<i>O</i><sub>1</sub>и<i>O</i><sub>2</sub>соответственно (по часовой стрелке). Доказать, что вершина<i>C</i>правильного треугольника<i>ABC</i>также движется равномерно по некоторой окружности.

Дана четвёрка ненулевых чисел<i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>. Из неё получается новая<i>ab</i>,<i>bc</i>,<i>cd</i>,<i>da</i>по следующему правилу: каждое число умножается на следующее, четвёртое — на первое. Из новой четвёрки по этому же правилу получается третья и т.д. Доказать, что в полученной последовательности четвёрок никогда не встретится вновь четверка<i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>, кроме случая, когда<i>a</i>=<i>b</i>=<i>c</i>=<i>d</i>= 1.

С центрами в вершинах прямоугольника построены четыре окружности с радиусами<i>r</i><sub>1</sub>,<i>r</i><sub>2</sub>,<i>r</i><sub>3</sub>,<i>r</i><sub>4</sub>, причём<i>r</i><sub>1</sub>+<i>r</i><sub>3</sub>=<i>r</i><sub>2</sub>+<i>r</i><sub>4</sub><<i>d</i>;<i>d</i>— диагональ прямоугольника. Проводятся две пары внешних касательных к окружностям 1, 3 и 2, 4. Доказать, что в четырёхугольник, образованный этими четырьмя прямыми, можно вписать окружность.

Дана фигура, состоящая из 16 отрезков (см. рис.). <div align="center"><img src="/storage/problem-media/78261/problem_78261_img_2.gif"></div>Доказать, что нельзя провести ломаную, пересекающую каждый из отрезков ровно один раз. Ломаная может быть незамкнутой и самопересекающейся, но её вершины не должны лежать на отрезках, а стороны – проходить через вершины фигуры.

Доказать, что не существует целых чисел <i>a, b, c, d</i>, удовлетворяющих равенствам:

  <i>abcd – a</i> = 1961,

  <i>abcd – b</i> = 961,

  <i>abcd – c</i> = 61,

  <i>abcd – d</i> = 1.

Дана таблица 4×4 клетки, в некоторых клетках которой поставлено по звёздочке. Показать, что можно так расставить семь звёздочек, что при вычёркивании любых двух строк и любых двух столбцов этой таблицы в оставшихся клетках всегда была бы хотя бы одна звёздочка. Доказать, что если звёздочек меньше, чем семь, то всегда можно так вычеркнуть две строки и два столбца, что все оставшиеся клетки будут пустыми.

Доказать, что среди любых 39 последовательных натуральных чисел обязательно найдётся такое, у которого сумма цифр делится на 11.

В квадрате<i>ABCD</i>на стороне<i>AB</i>взята точка<i>P</i>, на стороне<i>BC</i>— точка<i>Q</i>, на стороне<i>CD</i>— точка<i>R</i>, на стороне<i>DA</i>—<i>S</i>; оказалось, что фигура<i>PQRS</i>— прямоугольник. Доказать, что тогда прямоугольник<i>PQRS</i>— либо квадрат, либо обладает тем свойством, что его стороны параллельны диагоналям квадрата.

Стороны произвольного выпуклого многоугольника покрашены снаружи. Проводится несколько диагоналей многоугольника, так, что никакие три не пересекаются в одной точке. Каждая из этих диагоналей тоже покрашена с одной стороны, т.е. с одной стороны отрезка проведена узкая цветная полоска. Доказать, что хотя бы один из многоугольников, на которые разбит диагоналями исходный многоугольник, весь покрашен снаружи.

Известно, что<i>Z</i><sub>1</sub>+ ... +<i>Z</i><sub>n</sub>= 0, где<i>Z</i><sub>k</sub>— комплексные числа. Доказать, что среди этих чисел найдутся два таких, что разность их аргументов больше или равна120<sup><tt>o</tt></sup>.

Окружность<i>S</i>и точка<i>O</i>лежат в одной плоскости, причём<i>O</i>находится вне окружности. Построим произвольный шар, проходящий через окружность<i>S</i>, и опишем конус с вершиной в точке<i>O</i>и касающийся шара. Найти геометрическое место центров окружностей, по которым конусы касаются шаров.

<i>k</i>человек ехали в автобусе без кондуктора, и у всех них были монеты только достоинством в 10, 15, 20 копеек. Известно, что каждый уплатил за проезд и получил сдачу. Доказать, что наименьшее число монет, которое они могли иметь, равно<i>k</i>+$\left[\vphantom{\frac{k+3}{4}}\right.$${\frac{k+3}{4}}$$\left.\vphantom{\frac{k+3}{4}}\right]$, где значок [<i>a</i>] означает наибольшее целое число, не превосходящее<i>a</i>.<b>Примечание.</b>Проезд в автобусе стоит 5 копеек.

На плоскости проведено несколько полос разной ширины. Никакие две из них не параллельны. Как нужно сдвинуть их параллельно самим себе, чтобы площадь их общей части была наибольшей?

Дана последовательность чисел <i>F</i><sub>1</sub>, <i>F</i><sub>2</sub>, ...;  <i>F</i><sub>1</sub> = <i>F</i><sub>2</sub> = 1  и   <i>F</i><sub><i>n</i>+2</sub> = <i>F<sub>n</sub> + F</i><sub><i>n</i>+1</sub>.  Доказать, что <i>F</i><sub>5<i>k</i></sub> делится на 5 при  <i>k</i> = 1, 2, ... .

На плоскости дано<i>N</i>точек, никакие три из которых не лежат на одной прямой. Если<i>A</i>,<i>B</i>,<i>C</i>— любые три из них, то внутри треугольника<i>ABC</i>нет ни одной точки из данных. Доказать, что эти точки можно занумеровать так, что многоугольник<i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>n</sub>будет выпуклым.

В автобусе без кондуктора едут 4<i>k</i>пассажиров. У каждого из них есть только монеты в 10, 15, 20 копеек. Доказать, что если общее число монет меньше 5<i>k</i>, то пассажиры не смогут правильно расплатиться за проезд. Для числа монет 5<i>k</i>построить пример, когда возможен правильный расчет.<b>Примечание.</b>Проезд в автобусе стоит 5 копеек.

Доказать, что можно так расположить числа от 1 до <i>n</i>² в таблицу <i>n</i>×<i>n</i>, чтобы суммы чисел каждого столбца были равны.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка