Олимпиадные задачи из источника «1965 год»

В каждой клетке квадратной таблицы <i>m×m</i> клеток стоит либо натуральное число, либо нуль. При этом, если на пересечении строки и столбца стоит нуль, то сумма чисел в "кресте", состоящем из этой строки и этого столбца, не меньше <i>m</i>. Докажите, что сумма всех чисел в таблице не меньше чем  ½ <i>m</i>².

Дан многоугольник на плоскости, невыпуклый и несамопересекающийся. Д – множество точек, принадлежащих тем диагоналям многоугольника, которые не вылезают за его пределы (то есть лежат либо целиком внутри, либо частью внутри, частью на контуре). Концы этих диагоналей тоже включаются в Д. Докажите, что любые две точки из Д можно соединить ломаной, целиком принадлежащей Д.

Дана плоскость <i>P</i> и две точки <i>A</i> и <i>B</i> по разные стороны от неё. Построить сферу, проходящую через эти точки, высекающую из <i>P</i> наименьший круг.

Докажите, что последние цифры чисел <i>n<sup>n</sup></i> (<i>n</i> – натуральное) образуют периодическую последовательность.

Найдите все простые числа вида  <i>P<sup>P</sup></i> + 1  (<i>P</i> – натуральное), содержащие не более 19 цифр.

В ящике лежат два ящика поменьше, в каждом из них ещё по два ящика и т.д. <i>n</i> раз. В каждом из 2<sup><i>n</i></sup> маленьких ящиков лежит по монете, причём одни вверх гербом, а остальные – вверх решкой. За один ход разрешается перевернуть один любой ящик вместе со всем, что в нём лежит. Доказать, что не больше, чем за <i>n</i> ходов можно расположить ящики так, что число монет, лежащих вверх гербом, будет равно числу монет, лежащих вверх решкой.

Все целые числа от 1 до 2<i>n</i> выписаны в строчку. Затем к каждому числу прибавили номер того места, на котором оно стоит.

Доказать, что среди полученных сумм найдутся хотя бы две, дающие при делении на 2<i>n</i> одинаковый остаток.

В прямоугольном бильярде размером <i>p</i>×2<i>q</i>, где <i>p</i> и <i>q</i> – нечётные числа, сделаны лузы в каждом углу и в середине каждой стороны длины 2<i>q</i>. Из угла выпущен шарик под углом 45° к стороне. Доказать, что шарик обязательно попадёт в одну из средних луз.

На лист клетчатой бумаги размером <i>n</i>×<i>n</i> клеток кладутся чёрные и белые кубики, причём каждый кубик занимает ровно одну клетку. Первый слой кубиков положили произвольно, а затем вспомнили, что каждый чёрный кубик должен граничить с чётным числом белых, а каждый белый — с нечётным числом чёрных. Кубики во второй слой положили так, чтобы для всех кубиков первого слоя выполнялось это условие. Если для всех кубиков второго слоя это условие уже выполняется, то больше кубиков не кладут, если же нет, то кладут третий слой так, чтобы чтобы для всех кубиков второго слоя выполнялось это условие, и так далее. Существует ли такое расположение кубиков первого слоя, что этот процесс никогда не кончится?

Имеется 11 мешков с монетами и весы с двумя чашками и стрелкой, которые показывают, на какой чашке груз тяжелее и на сколько именно. Известно, что в одном мешке все монеты фальшивые, а в остальных – все монеты настоящие. Все настоящие монеты имеют одинаковый вес, а все фальшивые – также одинаковый, но другой вес. За какое наименьшее число взвешиваний можно определить, в каком мешке лежат фальшивые монеты?

Найти геометрическое место центров равносторонних треугольников, описанных около данного произвольного треугольника.

Дан биллиард прямоугольной формы. В его углах имеются лузы, попадая в которые шарик останавливается. Шарик выпускают из одного угла бильярда под углом45<sup><tt>o</tt></sup>к стороне. В какой-то момент он попал в середину некоторой стороны. Доказать, что в середине противоположной стороны он побывать не мог.

Имеется 11 мешков монет. В 10 из них монеты настоящие, а в одном – все монеты фальшивые. Все настоящие монеты одного веса, все фальшивые монеты – также одного, но другого веса. Имеются весы, с помощью которых можно определить, какой из двух грузов тяжелее и на сколько. Двумя взвешиваниями определить, в каком мешке фальшивые монеты.

Посередине между двумя параллельными улицами стоят в один ряд одинаковые дома со стороной, равной <i>a</i>. Расстояние между улицами – 3<i>a</i>, а расстояние между двумя соседними домами – 2<i>a</i> (см. рис.). <div align="center"><img src="/storage/problem-media/78571/problem_78571_img_2.gif"></div>Одна улица патрулируется полицейскими, которые движутся на расстоянии 9<i>a</i> друг от друга со скоростью <i>v</i>. К тому времени, как первый полицейский проходит мимо середины некоторого дома, точно напротив него на другой улице появляется гангстер. С какой постоянной скоростью и в какую сторону должен двигаться по этой улице гангстер, чтобы ни один полицейский его не заметил?

Два неравных картонных диска разделены на 1965 равных секторов. На каждом из дисков произвольно выбраны 200 секторов и раскрашены в красный цвет. Меньший диск наложен на больший, так что их центры совпадают, а секторы целиком лежат один против другого. Меньший диск поворачивают на всевозможные углы, кратные${\frac{1}{1965}}$части окружности, оставляя больший диск неподвижным. Доказать, что по крайней мере при 60 положениях на дисках совпадут не более 20 красных секторов.

Дан прямоугольный биллиард размером 26×1965 (сторона длины 1965 направлена слева направо, а сторона длины 26 – сверху вниз; лузы расположены в вершинах прямоугольника). Из нижней левой лузы под углом 45° к бортам выпускается шар. Доказать, что после нескольких отражений от бортов он упадет в верхнюю левую лузу. (Угол падения равен углу отражения.)

Дана последовательность...,<i>a</i><sub>-n</sub>,...,<i>a</i><sub>-1</sub>,<i>a</i><sub>0</sub>,<i>a</i><sub>1</sub>,...,<i>a</i><sub>n</sub>,... бесконечная в обе стороны, причём каждый её член равен${\frac{1}{4}}$суммы двух соседних. Доказать, что если какие-то два её члена равны, то в ней есть бесконечное число пар равных между собой чисел. (Пояснение: два члена, про которые известно, что они равны, не обязательно соседние).

Даны двадцать карточек. Каждая из цифр от нуля до девяти включительно написана на двух из этих карточек (на каждой карточке – только одна цифра). Можно ли расположить эти карточки в ряд так, чтобы нули стояли рядом, между единицами лежала ровно одна карточка, между двойками – две, и так далее до девяток, между которыми должно быть девять карточек?

Даны окружность<i>O</i>, точка<i>A</i>, лежащая на ней, перпендикуляр к плоскости окружности<i>O</i>, восставленный из точки<i>A</i>, и точка<i>B</i>, лежащая на этом перпендикуляре. Найдите геометрическое место оснований перпендикуляров, опущенных из точки<i>A</i>на прямые, проходящие через точку<i>B</i>и произвольную точку окружности<i>O</i>.

В квадратном уравнении  <i>x</i>² + <i>px + q</i>  коэффициенты <i>p, q</i> независимо пробегают все значения от –1 до 1 включительно.

Найти множество значений, которые при этом принимает действительный корень данного уравнения.

На плоскости даны три точки. Построить три окружности, касающиеся друг друга в этих точках. Разобрать все случаи.

Все коэффициенты многочлена равны 1, 0 или –1. Докажите, что все его действительные корни (если они существуют) заключены в отрезке  [–2, 2].

Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников?

<i>X</i> – число, большее 2. Некто пишет на карточках числа:   1, <i>X, X</i>², <i>X</i>³, <i>X</i><sup>4</sup>, ..., <i>X<sup>k</sup></i> (каждое число только на одной карточке). Потом часть карточек он кладёт себе в правый карман, часть   в левый, остальные выбрасывает. Докажите, что сумма чисел в правом кармане не может быть равна сумме чисел в левом.

Концы отрезка постоянной длины скользят по сторонам данного угла. Из середины этого отрезка к нему восставлен перпендикуляр. Докажите, что отрезок перпендикуляра от его начала до точки пересечения с биссектрисой угла имеет постоянную длину.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка