Олимпиадные задачи из источника «2000 год»
<i> ABCD </i>– выпуклый четырёхугольник. Окружности, построенные на отрезках<i> AB </i>и<i> CD </i>как на диаметрах, касаются внешним образом в точке<i> M </i>, отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки<i> A </i>,<i> M </i>и<i> C </i>, вторично пересекает прямую, соединяющую точку<i> M </i>и середину<i> AB </i>в точке<i> K </i>, а окружность, проходящая через точки<i> B </i>,<i> M </i>и<i> D </i>, вторично пересекает ту же прямую в точке<i> L </i>. Докажите, что<i> |MK-ML| = |AB-CD| </i>.
Дана окружность и точка <i>A</i> внутри неё.
Найдите геометрическое место вершин <i>C</i> всевозможных прямоугольников <i>ABCD</i>, где точки <i>B</i> и <i>D</i> лежат на окружности.
В треугольнике <i>ABC</i> медиана <i>BM</i> равна стороне <i>AC</i>. На продолжениях сторон <i>BA</i> и <i>AC</i> за точки <i>A</i> и <i>C</i> выбраны соответственно точки <i>D</i> и <i>E</i>, причём
<i>AD = AB</i> и <i>CE = CM</i>. Докажите, что прямые <i> DM </i> и <i> BE </i> перпендикулярны.
Хорды <i>AC</i> и <i>BD</i> окружности с центром <i>O</i> пересекаются в точке <i>K</i>. Пусть <i>M</i> и <i>N</i> – центры описанных окружностей треугольников <i>AKB</i> и <i>CKD</i> соответственно. Докажите, что <i>OM = KN</i>.
Можно ли расположить бесконечное число равных выпуклых многогранников в слое, ограниченном двумя параллельными плоскостями, так чтобы ни один многогранник нельзя было вынуть из слоя, не сдвигая остальных?
В круговом шахматном турнире каждый участник сыграл с каждым из остальных один раз. Назовём партию <i>неправильной</i>, если выигравший её шахматист в итоге набрал очков меньше чем проигравший. (Победа даёт 1 очко, ничья – ½, поражение – 0.) Могут ли неправильные партии составлять
а) более 75% от общего количества партий в турнире;
б) более 70%?
У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?
Вычислите $$\int \limits_0^{\pi} \big(|\sin(1999x)|-|\sin(2000x)|\big) , dx.$$
Наибольший общий делитель натуральных чисел <i>m</i> и <i>n</i> равен 1. Каково наибольшее возможное значение НОД(<i>m</i> + 2000<i>n</i>, <i>n</i> + 2000<i>m</i>)?
Из колоды вынули семь карт, показали всем, перетасовали и раздали Грише и Лёше по три карты, а оставшуюся карту
а) спрятали;
б) отдали Коле.
Гриша и Лёша могут по очереди сообщать вслух любую информацию о своих картах. Могут ли они сообщить друг другу свои карты так, чтобы при этом Коля не смог вычислить местонахождение ни одной из тех карт, которых он не видит? (Гриша и Лёша не договаривались о каком-либо особом способе общения; все переговоры происходят <i>открытым текстом</i>.)
Из имеющихся последовательностей {<i>b<sub>n</sub></i>} и {<i>c<sub>n</sub></i>} (возможно, {<i>b<sub>n</sub></i>} совпадает с {<i>c<sub>n</sub></i>}) разрешается получать последовательности {<i>b<sub>n</sub> + c<sub>n</sub></i>},
{<i>b<sub>n</sub> – c<sub>n</sub></i>}, {<i>b<sub>n</sub>c<sub>n</sub></i>} и {<sup><i>b<sub>n</sub></i></sup>/<sub><i>c<sub>n</sub></i></sub>} (если все члены последовательности {<i>c<sub>n</sub></i>} отличны от 0). Кроме того, из любой имеющейся последователь...
На бумаге "в клеточку" нарисован выпуклый многоугольник <i>M</i>, так что все его вершины находятся в вершинах клеток и ни одна из его сторон не идёт по вертикали или горизонтали. Докажите, что сумма длин вертикальных отрезков линий сетки, заключённых внутри <i>M</i>, равна сумме длин горизонтальных отрезков линий сетки внутри <i>M</i>.
Пусть <i>f</i>(<i>x</i>) = <i>x</i>² + 12<i>x</i> + 30. Решите уравнение <i>f</i>(<i>f</i>(<i>f</i>(<i>f</i>(<i>f</i>(<i>x</i>))))) = 0.
Точки A и B взяты на графике функции y=1/x, x>0. Из них опущены перпендикуляры на ось абсцисс, основания перпендикуляров - H<sub>A</sub> и H<sub>B</sub>; O - начало координат. Докажите, что площадь фигуры, ограниченной прямыми OA, OB и дугой AB, равна площади фигуры, ограниченной прямыми AH<sub>A</sub>, BH<sub>B</sub>, осью абсцисс и дугой AB.
Система укреплений состоит из блиндажей. Некоторые из блиндажей соединены траншеями, причём из каждого блиндажа можно перебежать в какой-нибудь другой. В одном из блиндажей спрятался пехотинец. Пушка может одним выстрелом накрыть любой блиндаж. В каждом промежутке между выстрелами пехотинец обязательно перебегает по одной из траншей в соседний блиндаж (даже если по соседнему блиндажу только что стреляла пушка, пехотинец может туда перебежать). Назовём систему <i>надёжной</i>, если у пушки нет гарантированной стратегии поражения пехотинца (то есть такой последовательности выстрелов, благодаря которой пушка поразит пехотинца независимо от его начального местонахождения и последующих передвижений). <div align="center"><img src="/storage/problem-media/1050...
Гриша записал в клетки шахматной доски числа 1, 2, 3, ..., 63, 64 в некотором порядке. Он сообщил Лёше только сумму чисел в каждом прямоугольнике из двух клеток и добавил, что 1 и 64 лежат на одной диагонали. Докажите, что по этой информации Лёша может точно определить, в какой клетке какое число записано.
В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело.
Решите уравнение (<i>x</i> + 1)<sup>63</sup> + (<i>x</i> + 1)<sup>62</sup>(<i>x</i> – 1) + (<i>x</i> + 1)<sup>61</sup>(<i>x</i> – 1)² + ... + (<i>x</i> – 1)<sup>63</sup> = 0.
Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других?
В колоде часть карт лежит рубашкой вниз. Время от времени Петя вынимает из колоды пачку из одной или нескольких подряд идущих карт, в которой верхняя и нижняя карты лежат рубашкой вниз, переворачивает всю пачку как одно целое и вставляет её в то же место колоды (если "пачка" состоит лишь из одной карты, то требуется только, чтобы она лежала рубашкой вниз). Докажите, что в конце концов все карты лягут рубашкой вверх, как бы ни действовал Петя.
Длины оснований трапеции равны <i>m</i> см и <i>n</i> см (<i>m</i> и <i>n</i> – натуральные числа, <i>m ≠ n</i>). Докажите, что трапецию можно разрезать на равные треугольники.
В выборах в 100-местный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов. После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т. п. не было) и каждая партия получила целое число мест. При этом Партия любителей математики набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?
Два различных числа <i>x</i> и <i>y</i> (не обязательно целых) таковы, что <i>x</i>² – 2000<i>x = y</i>² – 2000<i>y</i>. Найдите сумму чисел <i>x</i> и <i>y</i>.