Олимпиадные задачи из источника «1979 год»
Объединение нескольких кругов имеет площадь 1. Доказать, что из них можно выбрать несколько попарно непересекающихся кругов, сумма площадей которых больше${\frac{1}{9}}$. (Сравни с задачей<a href="https://mirolimp.ru/tasks/178201">178201</a>.)
Функция<i>y</i>=<i>f</i>(<i>x</i>) определена на отрезке [0;1] и в каждой точке этого отрезка имеет первую и вторую производные. Известно, что<i>f</i> (0) = <i>f</i> (1) = 0 и что |<i>f''</i>(<i>x</i>)| ≤ 1 на всём отрезке. Какое наибольшее значение может принимать максимум функции<i>f</i>для всевозможных функций, удовлетворяющих этим условиям?
На химической конференции присутствовало<i>k</i>учёных химиков и алхимиков, причём химиков было больше, чем алхимиков. Известно, что на любой вопрос химики всегда отвечают правду, а алхимики иногда говорят правду, а иногда лгут. Оказавшийся на конференции математик про каждого учёного хочет установить, химик тот или алхимик. Для этого он любому учёному может задать вопрос: "Кем является такой-то: химиком или алхимиком?" (В частности, может спросить, кем является сам этот учёный.) Доказать, что математик может установить это за 2<i>k</i>− 3 вопросов.
а) Существует ли последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., обладающая следующим свойством: ни один член последовательности не равен сумме нескольких других и <i>a<sub>n</sub> ≤ n</i><sup>10</sup> при любом <i>n</i>? б) Тот же вопрос, если <i>a<sub>n</sub> ≤ n</i><img width="27" height="33" align="MIDDLE" border="0" src="/storage/problem-media/79370/problem_79370_img_2.gif"> при любом <i>n</i>.
Имеется несколько камней, масса каждого из которых не превосходит 2 кг, а общая масса равна 100 кг. Из них выбирается несколько камней, суммарная масса которых отличается от 10 кг на наименьшее возможное для данного набора число <i>d</i>. Какое максимальное значение может принимать число <i>d</i> для всевозможных наборов камней?
На химической конференции присутствовало<i>k</i>учёных химиков и алхимиков, причём химиков было больше, чем алхимиков. Известно, что на любой вопрос химики всегда отвечают правду, а алхимики иногда говорят правду, а иногда лгут. Оказавшийся на конференции математик про каждого учёного хочет установить, химик тот или алхимик. Для этого он любому учёному может задать вопрос: ``Кем является такой-то: химиком или алхимиком?'' (В частности, может спросить, кем является сам этот учёный.) Доказать, что математик может установить это за: а) 4<i>k</i>вопросов; б) 2<i>k</i>- 2 вопросов.
На плоскости отмечена точка <i>O</i>. Можно ли так расположить на плоскости а) 7 кругов; б) 6 кругов, не покрывающих точку <i>O</i>, чтобы каждый луч с началом в точке <i>O</i> пересекал не менее трёх кругов?
Коля и Витя играют в следующую игру на бесконечной клетчатой бумаге. Начиная с Коли, они по очереди отмечают узлы клетчатой бумаги — точки пересечения вертикальных и горизонтальных прямых. При этом каждый из них своим ходом должен отметить такой узел, что после этого все отмеченные узлы лежали в вершинах выпуклого многоугольника (начиная со второго хода Коли). Тот из играющих, кто не сможет сделать очередного хода, считается проигравшим. Кто выигрывает при правильной игре?
Квадрат разрезан на прямоугольники.
Доказать, что сумма площадей кругов, описанных около каждого прямоугольника, не меньше площади круга, описанного около квадрата.
Имеется несколько гирь, общая масса которых равна 1 кг. Каждой гире присвоен свой номер: 1, 2, 3, .... Доказать, что найдётся такой номер <i>n</i>, что масса гири с номером<i>n</i>строго больше${\frac{1}{2^n}}$кг.
На плоскости отмечена точка <i>O</i>. Можно ли так расположить на плоскости: а) 5 кругов; б) 4 круга, не покрывающих точку <i>O</i>, чтобы каждый луч с началом в точке <i>O</i> пересекал не менее двух кругов?
<i>ABCD</i>- вписанный четырехугольник, диагонали которого перпендикулярны.<i>O</i>- центр описанной окружности четырехугольника<i>ABCD</i>. Докажите, что расстояние от точки <i>O</i>до стороны <i>AB</i>равно половине длины стороны <i>CD</i>.