Олимпиадная задача по планиметрии и инвариантам о бусинках на кольце, 8-10 класс
Задача
На кольцо свободно нанизано 2009 бусинок. За один ход любую бусинку можно передвинуть так, чтобы она оказалась ровно посередине между двумя соседними. Существуют ли такие изначальная расстановка бусинок и последовательность ходов, при которых какая-то бусинка пройдёт хотя бы один полный круг?
Решение
Пусть при каком-то начальном расположении бусинок нашлась последовательность ходов, в результате которой какая-то бусинка прошла полный круг против часовой стрелки или больше. Обозначим начальное положение этой бусинки O. Тогда положения бусинок определяются углом от точки O с точностью до 2π, причём углы по часовой стрелке будем считать со знаком минус, а углы против часовой стрелки со знаком плюс. Занумеруем бусинки по порядку. Обозначим через αi угол до i-й бусинки. Тогда вначале – 2π < α1 < α2 < ... < α2009 = 0 (см. рис.).

Ответ
Не существуют.
Чтобы оставлять комментарии, войдите или зарегистрируйтесь