Олимпиадные задачи из источника «2011 год»
По рёбрам треугольной пирамиды ползают четыре жука, при этом каждый жук всё время остаётся только в одной грани (в каждой грани – свой жук). Каждый жук обходит границу своей грани в определённом направлении, причём так, что каждые два жука по общему для них ребру ползут в противоположных направлениях. Докажите, что если скорости (возможно, непостоянные) каждого из жуков всегда больше 1 см/с, то когда-нибудь какие-то два жука обязательно встретятся.
При какой перестановке <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>2011</sub> чисел 1, 2, ..., 2011 значение выражения <div align="center"><img src="/storage/problem-media/116235/problem_116235_img_2.png"></div>будет наибольшим?
Внутри треугольника <i>ABC</i> взята такая точка <i>O</i>, что ∠<i>ABO</i> = ∠<i>CAO</i>, ∠<i>BAO</i> = ∠<i>BCO</i>, ∠<i>BOC</i> = 90°. Найдите отношение <i>AC</i> : <i>OC</i>.
Верно ли, что любые 100 карточек, на которых написано по одной цифре 1, 2 или 3, встречающейся не более чем по 50 раз каждая, можно разложить в один ряд так, чтобы в нём не было фрагментов 11, 22, 33, 123 и 321?
Кривая на плоскости в некоторой системе координат (декартовой) служит графиком функции <i>y</i> = sin <i>x</i>. Может ли та же кривая являться графиком функции <i>y</i> = sin <sup>2</sup><i>x</i> в другой системе координат: если да, то каковы её начало координат и единицы длины на осях (относительно исходных координат и единиц длины)?
Продавец хочет разрезать кусок сыра на части, которые можно будет разложить на две кучки равного веса. Он умеет разрезать любой кусок сыра в одном и том же отношении <i>a</i> : (1 – <i>a</i>) по весу, где 0 < <i>a</i> < 1. Верно ли, что на любом промежутке длины 0,001 из интервала (0, 1) найдётся значение <i>a</i>, при котором он сможет добиться желаемого результата с помощью конечного числа разрезов?
Рассматриваются ортогональные проекции данного правильного тетраэдра с единичным ребром на всевозможные плоскости. Какое наибольшее значение может принимать радиус круга, содержащегося в такой проекции?
В каждой клетке квадратной таблицы написано по действительному числу. Известно, что в каждой строке таблицы сумма <i>k</i> наибольших чисел равна <i>a</i>, а в каждом столбце таблицы сумма <i>k</i> наибольших чисел равна <i>b</i>.
а) Докажите, что если <i>k</i> = 2, то <i>a = b</i>.
б) В случае <i>k</i> = 3 приведите пример такой таблицы, для которой <i>a ≠ b</i>.
В равнобедренном треугольнике <i>ABC</i> на основании <i>BC</i> взята точка <i>D</i>, а на боковой стороне <i>AB</i> – точки <i>E</i> и <i>M</i> так, что <i>AM = ME</i> и отрезок <i>DM</i> параллелен стороне <i>AC</i>. Докажите, что <i>AD + DE > AB + BE</i>.
Сравните между собой наименьшие положительные корни многочленов <i>x</i><sup>2011</sup> + 2011<i>x</i> – 1 и <i>x</i><sup>2011</sup> – 2011<i>x</i> + 1.
Последовательность из двух различных чисел продолжили двумя способами: так, чтобы получилась геометрическая прогрессия, и так, чтобы получилась арифметическая прогрессия. При этом третий член геометрической прогрессии совпал с десятым членом арифметической прогрессии. А с каким членом арифметической прогрессии совпал четвёртый член геометрической прогрессии?
Две фирмы по очереди нанимают программистов, среди которых есть 4 гения. Первого программиста каждая фирма выбирает произвольно, а каждый следующий должен быть знаком с кем-то из ранее нанятых данной фирмой. Если фирма не может нанять программиста по этим правилам, она прекращает приём, а другая может продолжать. Список программистов и их знакомств заранее известен. Могут ли знакомства быть устроены так, что фирма, вступающая в игру второй, сможет нанять по крайней мере 3 гениев, как бы ни действовала первая фирма?
Куб разбит на прямоугольные параллелепипеды так, что для любых двух параллелепипедов их проекции на некоторую грань куба перекрываются (то есть пересекаются по фигуре ненулевой площади). Докажите, что для любых трёх параллелепипедов найдётся такая грань куба, что проекции каждых двух из них на эту грань не перекрываются.
У Винтика и у Шпунтика есть по три палочки суммарной длины 1 метр у каждого. И Винтик, и Шпунтик могут сложить из трёх своих палочек треугольник. Ночью в их дом прокрался Незнайка, взял по одной палочке у Винтика и у Шпунтика и поменял их местами. Наутро оказалось, что Винтик не может сложить из своих палочек треугольник. Можно ли гарантировать, что Шпунтик из своих — сможет?
В треугольнике <i>ABC</i> проведены биссектрисы <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub>. Известно, что центр описанной окружности треугольника <i>BB</i><sub>1</sub><i>C</i><sub>1</sub> лежит на прямой <i>AC</i>. Найдите угол <i>C</i> треугольника.
Доска 2010×2011 покрыта доминошками 2×1; некоторые из них лежат горизонтально, некоторые – вертикально.
Докажите, что граница горизонтальных доминошек с вертикальными имеет чётную длину.
Существует ли арифметическая прогрессия из 2011 натуральных чисел, в которой количество чисел, делящихся на 8, меньше, чем количество чисел, делящихся на 9, а последнее, в свою очередь, меньше, чем количество чисел, делящихся на 10?
На доске выписано (<i>n</i> – 1)<i>n</i> выражений: <i>x</i><sub>1</sub> – <i>x</i><sub>2</sub>, <i>x</i><sub>1</sub> – <i>x</i><sub>3</sub>, ..., <i>x</i><sub>1</sub> – <i>x<sub>n</sub></i>, <i>x</i><sub>2</sub> – <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub> – <i>x</i><sub>3</sub>, ..., <i>x</i><sub>2</sub> – <i>x<sub>n</sub></i>, ..., <i>x<sub>n</sub></i> – <i>x</i><sub><i>n</i>–1</sub>, где <i>n</i&...
В трапеции <i>ABCD</i> с основаниями <i>AD</i> и <i>BC</i> лучи <i>AB</i> и <i>DC</i> пересекаются в точке <i>K</i>. Точки <i>P</i> и <i>Q</i> – центры описанных окружностей треугольников <i>ABD</i> и <i>BCD</i>. Докажите, что ∠<i>PKA</i> = ∠<i>QKD</i>.
На доске написаны три натуральных числа, не превосходящих 40. За один ход можно увеличить любое из написанных чисел на число процентов, равное одному из двух оставшихся чисел, если в результате получится целое число. Существуют ли такие исходные числа, что за несколько ходов одно из чисел на доске можно сделать больше 2011?
В прямоугольном треугольнике <i>ABC</i> с прямым углом <i>C</i> угол <i>A</i> равен 30°, точка <i>I</i> – центр вписанной окружности <i>ABC, D</i> – точка пересечения отрезка <i>BI</i> с этой окружностью. Докажите, что отрезки <i>AI</i> и <i>CD</i> перпендикулярны.
В турнире каждый участник встретился с каждым из остальных один раз. Каждую встречу судил один арбитр, и все арбитры судили разное количество встреч. Игрок Иванов утверждает, что все его встречи судили разные арбитры. То же самое утверждают о себе игроки Петров и Сидоров. Может ли быть, что никто из них не ошибается?
Что больше: 2011<sup>2011</sup> + 2009<sup>2009</sup> или 2011<sup>2009</sup> + 2009<sup>2011</sup>?
В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна <i>a</i>, а в каждом столбце сумма двух наибольших чисел равна <i>b</i>. Докажите, что <i>a = b</i>.
Точки <i>M</i> и <i>N</i> – середины боковых сторон <i>AB</i> и <i>CD</i> трапеции <i>ABCD</i>. Перпендикуляр, опущенный из точки <i>M</i> на диагональ <i>AC</i>, и перпендикуляр, опущенный из точки <i>N</i> на диагональ <i>BD</i>, пересекаются в точке <i>P</i>. Докажите, что <i>PA = PD</i>.