Олимпиадные задачи из источника «Московская математическая олимпиада» для 9 класса - сложность 1 с решениями
Московская математическая олимпиада
НазадКакое наибольшее значение может принимать выражение <img align="absmiddle" src="/storage/problem-media/115510/problem_115510_img_2.gif"> где <i>a, b, c</i> – попарно различные ненулевые цифры?
Съев на пустой желудок трёх поросят и семерых козлят, Серый Волк всё ещё страдал от голода. Зато в другой раз он съел на пустой желудок семь поросят и козлёнка и страдал уже от обжорства. От чего пострадает Волк, если съест на пустой желудок 11 козлят?
Известно, что<i>a</i>+${\frac{b^2}{a}}$=<i>b</i>+${\frac{a^2}{b}}$. Верно ли, что<i>a</i>=<i>b</i>?
Докажите, что<div align="CENTER"> | <i>x</i>| + | <i>y</i>| + | <i>z</i>|$\displaystyle \le$| <i>x</i> + <i>y</i> - <i>z</i>| + | <i>x</i> - <i>y</i> + <i>z</i>| + |-<i>x</i> + <i>y</i> + <i>z</i>|, </div>где<i>x</i>,<i>y</i>,<i>z</i> — действительные числа.
Существует ли невыпуклый пятиугольник, никакие две из пяти диагоналей которого не имеют общих точек (кроме вершин)?
Кооператив получает яблочный и виноградный сок в одинаковых бидонах и выпускает яблочно-виноградный напиток в одинаковых банках. Одного бидона яблочного сока хватает ровно на 6 банок напитка, а одного бидона виноградного – ровно на 10. Когда рецептуру напитка изменили, одного бидона яблочного сока стало хватать ровно на 5 банок напитка. На сколько банок напитка хватит теперь одного бидона виноградного сока? (Напиток водой не разбавляется.)
Два различных числа <i>x</i> и <i>y</i> (не обязательно целых) таковы, что <i>x</i>² – 2000<i>x = y</i>² – 2000<i>y</i>. Найдите сумму чисел <i>x</i> и <i>y</i>.
Существует ли плоский четырехугольник, у которого тангенсы всех внутренних углов равны?
Для зашифровки телеграфных сообщений требуется разбить всевозможные десятизначные "слова" – наборы из десяти точек и тире – на две группы так, чтобы каждые два слова одной группы отличались не менее чем в трёх разрядах. Указать способ такого разбиения или доказать, что его не существует.
Найти геометрическое место центров вписанных в треугольник<i>ABC</i>прямоугольников (одна сторона прямоугольника лежит на<i>AB</i>).
Внутри данного треугольника<i>ABC</i>найти такую точку<i>O</i>, чтобы площади треугольников<i>AOB</i>,<i>BOC</i>,<i>COA</i>относились как 1 : 2 : 3.
Даны окружность<i>O</i>, прямая<i>a</i>, пересекающая её, и точка<i>M</i>. Через точку<i>M</i>провести секущую<i>b</i>так, чтобы её часть, заключённая внутри окружности<i>O</i>, делилась пополам в точке её пересечения с прямой<i>a</i>.
Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное.
Доказать, что число, состоящее из 300 единиц и некоторого количества нулей, не является точным квадратом.
Дан выпуклый четырёхугольник<i>ABCD</i>. Середины сторон<i>AB</i>и<i>CD</i>обозначим соответственно через<i>K</i>и<i>M</i>, точку пересечения<i>AM</i>и<i>DK</i>— через<i>O</i>, точку пересечения<i>BM</i>и<i>CK</i>— через<i>P</i>. Доказать, что площадь четырёхугольника<i>MOKP</i>равна сумме площадей треугольников<i>BPC</i>и<i>AOD</i>.
Заметим, что если перевернуть лист, на котором написаны цифры, то цифры 0, 1, 8 не изменятся, 6 и 9 поменяются местами, остальные потеряют смысл. Сколько существует девятизначных чисел, которые при переворачивании листа не изменяются?
Даны две бочки бесконечно большой емкости. Можно ли, пользуясь двумя ковшами емкостью2 -$\sqrt{2}$и$\sqrt{2}$, перелить из одной в другую ровно 1 литр?
Пусть<i>a</i>и<i>b</i>— целые числа. Напишем число<i>b</i>справа от числа<i>a</i>. Если число<i>a</i>чётное, то разделим его на 2, если оно нечётное, то сначала вычтем из него единицу, а потом разделим его на 2. Получившееся число<i>a</i><sub>1</sub>напишем под числом<i>a</i>. Справа от числа<i>a</i><sub>1</sub>напишем число 2<i>b</i>. С числом<i>a</i><sub>1</sub>проделаем ту же операцию, что и с числом<i>a</i>, и, получив число<i>a</i><sub>2</sub>, напишем его под числом<i>a</i><sub>1</sub>. Справа от числа<i>a</i><sub>2</sub>напишем число 4<i>b&l...
Доказать, что если целое <i>n</i> > 1, то 1<sup>1</sup>·2²·3³·...·<i>n<sup>n</sup> < n</i><sup><i>n</i>(<i>n</i>+1)/2</sup>.
Найти все равнобочные трапеции, которые разбиваются диагональю на два равнобедренных треугольника.
Докажите, что не существует на плоскости четырех точек<i>A</i>,<i>B</i>,<i>C</i>и<i>D</i>таких, что все треугольники<i>ABC</i>,<i>BCD</i>,<i>CDA</i>,<i>DAB</i>остроугольные.
Найти все прямоугольники, которые можно разрезать на 13 равных квадратов.
Дан прямоугольный треугольник <i>ABC</i>. Из вершины <i>B</i> прямого угла проведена медиана <i>BD</i>. Пусть <i>K</i> – точка касания стороны <i>AD</i> треугольника <i>ABD</i> с вписанной окружностью этого треугольника. Найти острые углы треугольника <i>ABC</i>, если <i>K</i> делит <i>AD</i> пополам.
Дан лист клетчатой бумаги. Каждый узел сетки обозначается некоторой буквой. Каким наименьшим числом различных букв нужно обозначить эти узлы, чтобы на отрезке (идущем по сторонам клеток - прим.ред.), соединяющем два узла, обозначенных одинаковыми буквами, находился, по крайней мере, один узел, обозначенный одной из других букв?
Даны два выпуклых многоугольника<i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub><i>A</i><sub>4</sub>...<i>A</i><sub>n</sub>и<i>B</i><sub>1</sub><i>B</i><sub>2</sub><i>B</i><sub>3</sub><i>B</i><sub>4</sub>...<i>B</i><sub>n</sub>. Известно, что<i>A</i><sub>1</sub><i>A</i><sub>2</sub>=<i>B</i><sub>1</sub><i>B</i><sub>2</sub>,<i>A</i><sub>2</sub><i>A</i><sub>3</sub>=<i>B</i><sub>2</su...