Олимпиадные задачи по математике
Что больше: 2011<sup>2011</sup> + 2009<sup>2009</sup> или 2011<sup>2009</sup> + 2009<sup>2011</sup>?
Известно, что<i>a</i>+${\frac{b^2}{a}}$=<i>b</i>+${\frac{a^2}{b}}$. Верно ли, что<i>a</i>=<i>b</i>?
Хулиганы Джей и Боб на уроке черчения нарисовали головастиков (четыре окружности на рисунке - одного радиуса, треугольник - равносторонний, горизонтальная сторона этого треугольника - диаметр окружности). Какой из головастиков имеет бо'льшую площадь? <img src="/storage/problem-media/105150/problem_105150_img_2.gif">
В стране 15 городов, некоторые из них соединены авиалиниями, принадлежащими трём авиакомпаниям. Известно, что даже если любая из авиакомпаний прекратит полеты, можно будет добраться из каждого города в любой другой (возможно, с пересадками), пользуясь рейсами оставшихся двух компаний. Какое наименьшее количество авиалиний может быть в стране?
В честь праздника 1% солдат в полку получил новое обмундирование. Солдаты расставлены в виде прямоугольника так, что солдаты в новом обмундировании оказались не менее чем в 30% колонн и не менее чем в 40% шеренг. Какое наименьшее число солдат могло быть в полку?
Числитель и знаменатель дроби – натуральные числа, дающие в сумме 101. Известно, что дробь не превосходит ⅓.
Укажите наибольшее возможное значение такой дроби.
В банановой республике прошли выборы в парламент, в которых участвовали все жители. Все голосовавшие за партию "Мандарин" любят мандарины. Среди голосовавших за другие партии 90% не любят мандарины. Сколько процентов голосов набрала партия "Мандарин" на выборах, если ровно 46% жителей любят мандарины?
Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.
Имеется шоколадка с пятью продольными и восемью поперечными углублениями, по которым её можно ломать (всего получается 9·6 = 54 дольки). Играют двое, ходят по очереди. Играющий за свой ход отламывает от шоколадки полоску ширины 1 и съедает её. Другой играющий за свой ход делает то же самое с оставшейся частью, и т. д. Тот, кто разламывает полоску ширины 2 на две полоски ширины 1, съедает одну из них, а другую съедает его партнер. Докажите, что начинающий игру может действовать таким образом, что ему достанется по крайней мере на 6 долек больше, чем второму.