Олимпиадные задачи по теме «Дроби»

Записаны шесть положительных несократимых дробей, сумма числителей которых равна сумме их знаменателей. Паша перевёл каждую из неправильных дробей в смешанное число. Обязательно ли найдутся два числа, у которых одинаковы либо целые части, либо дробные части?

Вася написал верное утверждение:

  "В этой фразе 1/3 всех цифр – цифры 3, а 1/2 всех цифр – цифры 1".

А Коля написал фразу:

  "В этой фразе 1/... всех цифр – цифры *, доли цифр * и * одинаковы и равны 1/..., а доля всех остальных цифр составляет 1/...".

Вставьте вместо звёздочек три разные цифры, а вместо многоточий – три разных числа так, чтобы получилось верное утверждение.

"А это вам видеть пока рано", – сказала Баба-Яга своим 33 ученикам и скомандовала: "Закройте глаза!" Правый глаз закрыли все мальчики и треть девочек. Левый глаз закрыли все девочки и треть мальчиков. Сколько учеников всё-таки увидели то, что видеть пока рано?

Мальчик с папой стоят на берегу моря. Если мальчик встанет на цыпочки, его глаза будут на высоте 1 м от поверхности моря, а если сядет папе на плечи, то на высоте 2 м. Во сколько раз дальше он будет видеть во втором случае. (Найдите ответ с точностью до 0,1, радиус Земли считайте равным 6000 км.)

Какое наибольшее значение может принимать выражение   <img align="absmiddle" src="/storage/problem-media/115510/problem_115510_img_2.gif">   где <i>a, b, c</i> – попарно различные ненулевые цифры?

Знаменатели двух несократимых дробей равны 600 и 700. Найдите наименьшее возможное значение знаменателя их суммы (в несократимой записи).

На каждом из двух огородов Дед посадил по одинаковому количеству репок. Если в огород заходит Внучка, то она выдергивает ровно &frac13; репок, имеющихся к этому моменту. Если заходит Жучка, то она выдергивает <sup>1</sup>/<sub>7</sub> репок, а если заходит Мышка, то она выдергивает только <sup>1</sup>/<sub>12</sub> репок. К концу недели на первом огороде осталось 7 репок, а на втором – 4. Заходила ли Жучка во второй огород?

На доске написано натуральное число. Если на доске написано число <i>x</i>, то можно дописать на нее число  2<i>x</i> + 1  или <sup><i>x</i></sup>/<sub><i>x</i>+2</sub>. В какой-то момент выяснилось, что на доске присутствует число 2008. Докажите, что оно там было с самого начала.

Дима посчитал факториалы всех натуральных чисел от80 до 99, нашел числа, обратные к ним, и напечатал получившиеся десятичные дроби на 20 бесконечных ленточках (например, на последней ленточке было напечатано число<i> <img align="abscenter" src="/storage/problem-media/111849/2.gif">=</i>0<i>, <img align="absmiddle" src="/storage/problem-media/111849/3.gif"></i>10715<i>.. </i>). Саша хочет вырезать из одной ленточки кусок, на котором записано<i> N </i>цифр подряд и нет запятой. При каком наибольшем<i> N </i>он сможет это сделать так, чтобы Дима не смог определить по этому куску, какую ленточку испортил Саша?

На доске написали 100 дробей, у которых в числителях стоят все числа от 1 до 100 по одному разу и в знаменателях стоят все числа от 1 до 100 по одному разу. Оказалось, что сумма этих дробей есть несократимая дробь со знаменателем 2. Докажите, что можно поменять местами числители двух дробей так, чтобы сумма стала несократимой дробью с нечётным знаменателем.

В бесконечной последовательности  (<i>x<sub>n</sub></i>)  первый член <i>x</i><sub>1</sub> – рациональное число, большее 1, и  <i>x</i><sub><i>n</i>+1</sub> = <i>x<sub>n</sub></i> + <sup>1</sup>/<sub>[<i>x<sub>n</sub></i>]</sub>  при всех натуральных <i>n</i>.

Докажите, что в этой последовательности есть целое число.

Даны положительные рациональные числа <i>a, b</i>. Один из корней трёхчлена  <i>x</i>² – <i>ax + b</i>  – рациональное число, в несократимой записи имеющее вид  <sup><i>m</i></sup>/<sub><i>n</i></sub>.  Докажите, что знаменатель хотя бы одного из чисел <i>a</i> и <i>b</i> (в несократимой записи) не меньше <i>n</i><sup>2/3</sup>.

На экране компьютера стоят в ряд 200 человек. На самом деле эта картинка составлена из 100 фрагментов, на каждом – пара: взрослый и ребёнок пониже ростом. Разрешается в каждом из фрагментов изменить масштаб, уменьшив при этом одновременно рост взрослого и ребёнка в одинаковое целое число раз (масштабы разных фрагментов можно менять независимо друг от друга). Докажите, что это можно сделать так, что на общей картинке все взрослые будут выше всех детей.

Натуральные числа покрашены в <i>N</i> цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.

  а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.

  б) При каких <i>N</i> такая раскраска возможна?

Для некоторых натуральных чисел <i>a, b, c</i> и <i>d</i> выполняются равенства  <i><sup>a</sup>/<sub>c</sub> = <sup>b</sup>/<sub>d</sub></i> = <sup><i>ab</i>+1</sup>/<sub><i>cd</i>+1</sub>.  Докажите, что  <i>a = c</i>  и  <i>b = d</i>.

Имеется 40 одинаковых газовых баллонов, значения давления газа в которых нам неизвестны и могут быть различны. Разрешается соединять любые баллоны друг с другом в количестве, не превосходящем заданного натурального числа <i>k</i>, а затем разъединять их; при этом давление газа в соединяемых баллонах устанавливается равным среднему арифметическому давлений в них до соединения. При каком наименьшем <i>k</i> существует способ уравнивания давлений во всех 40 баллонах независимо от первоначального распределения давлений в баллонах?

Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены <i>запрещёнными</i>. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний.

Сумма и произведение двух чисто периодических десятичных дробей – чисто периодические дроби с периодом <i>T</i>.

Докажите, что исходные дроби имеют периоды не больше <i>T</i>.

Последовательность {<i>a<sub>n</sub></i>} строится следующим образом:  <i>a</i><sub>1</sub> = <i>p</i>  – простое число, имеющее ровно 300 ненулевых цифр, <i>a</i><sub><i>n</i>+1</sub> – период десятичной дроби <sup>1</sup>/<sub><i>a<sub>n</sub></i></sub>, умноженный на 2. Найдите число <i>a</i><sub>2003</sub>.

Докажите, что существует бесконечно много натуральных <i>n</i>, для которых числитель несократимой дроби, равной  1 + ½ + ... + <sup>1</sup>/<sub><i>n</i></sub>,  не является степенью простого числа с натуральным показателем.

Назовём натуральные числа <i>похожими</i>, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.

Имеется семь стаканов с водой: первый стакан заполнен водой наполовину, второй – на треть, третий – на четверть, четвёртый – на &frac15;, пятый – на &frac18;, шестой – на <sup>1</sup>/<sub>9</sub>, и седьмой – на <sup>1</sup>/<sub>10</sub>. Разрешается переливать всю воду из одного стакана в другой или переливать воду из одного стакана в другой до тех пор, пока он не заполнится доверху. Может ли после нескольких переливаний какой-нибудь стакан оказаться заполненным   а) на <sup>1</sup>/<sub>12</sub>;   б) на &frac16;?

Даны такие натуральные числа<i>a</i>и<i>b</i>, что число  <sup><i>a</i>+1</sup>/<sub><i>b</i></sub>+<sup><i>b</i>+1</sup>/<sub><i>a</i></sub>  является целым. Докажите, что наибольший общий делитель чисел<i>a</i>и<i>b</i>не превосходит числа  <img align="absmiddle" src="/storage/problem-media/109551/problem_109551_img_2.gif">.

После того, как Наташа съела треть персиков из банки, уровень компота понизился на одну четверть.

На сколько (относительно нового уровня) понизится уровень компота, если съесть все оставшиеся персики?

Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал &frac15; общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал <sup>1</sup>/<sub>7</sub> часть от общего количества. Сколько было школьников?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка