Олимпиадные задачи из источника «Московская математическая олимпиада» для 9 класса - сложность 2 с решениями
Московская математическая олимпиада
НазадНатуральные числа <i>а, b, c</i> и <i>d</i> таковы, что <i>ab = cd</i>. Может ли число <i>a + b + c + d</i> оказаться простым?
В ряд лежит чётное число груш. Массы любых двух соседних груш отличаются не более чем на 1 г. Докажите, что можно все груши разложить по две в одинаковые пакеты и выложить пакеты в ряд так, чтобы массы любых двух соседних пакетов тоже отличались не более чем на 1 г.
В стране Далёкой провинция называется <i>крупной</i>, если в ней живёт более 7% жителей этой страны. Известно, что для каждой крупной провинции найдутся такие две провинции с меньшим населением , что их суммарное население больше, чем у этой крупной провинции. Какое наименьшее число провинций может быть в стране Далёкой?
На плоскости отмечены 100 точек, никакие три из которых не лежат на одной прямой. Саша разбивает точки на пары, после чего соединяет точки в каждой из пар отрезком. Всегда ли он может это сделать так, чтобы каждые два отрезка пересекались?
<img align="right" src="/storage/problem-media/116673/problem_116673_img_2.gif">Кузнечик умеет прыгать только ровно на 50 см. Он хочет обойти 8 точек, отмеченных на рисунке (сторона клетки равна 10 см). Какое наименьшее количество прыжков ему придётся сделать? (Разрешается посещать и другие точки плоскости, в том числе не узлы сетки. Начинать и заканчивать можно в любых точках.)
На доске написаны четыре трёхзначных числа, в сумме дающие 2012. Для записи их всех были использованы только две различные цифры.
Приведите пример таких чисел.
Сумма цифр натурального числа <i>n</i> равна 100. Может ли сумма цифр числа <i>n</i>³ равняться 1000000?
В треугольнике <i>ABC</i> точка <i>M</i> – середина стороны <i>AC</i>, точка <i>P</i> лежит на стороне <i>BC</i>. Отрезок <i>AP</i> пересекает <i>BM</i> в точке <i>O</i>. Оказалось, что <i>BO = BP</i>. Найдите отношение <i>OM</i> : <i>PC</i>.
Найдите такое значение $a > 1$, при котором уравнение $a^x = \log_a x$ имеет единственное решение.
Два пирата делили добычу, состоящую из пяти золотых слитков, масса одного из которых 1 кг, а другого – 2 кг. Какую массу могли иметь три других слитка, если известно, что какие бы два слитка ни выбрал себе первый пират, второй пират сможет так разделить оставшиеся слитки, чтобы каждому из них досталось золота поровну?
Внутри треугольника <i>ABC</i> взята такая точка <i>O</i>, что ∠<i>ABO</i> = ∠<i>CAO</i>, ∠<i>BAO</i> = ∠<i>BCO</i>, ∠<i>BOC</i> = 90°. Найдите отношение <i>AC</i> : <i>OC</i>.
В равнобедренном треугольнике <i>ABC</i> на основании <i>BC</i> взята точка <i>D</i>, а на боковой стороне <i>AB</i> – точки <i>E</i> и <i>M</i> так, что <i>AM = ME</i> и отрезок <i>DM</i> параллелен стороне <i>AC</i>. Докажите, что <i>AD + DE > AB + BE</i>.
В треугольнике <i>ABC</i> проведены биссектрисы <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub>. Известно, что центр описанной окружности треугольника <i>BB</i><sub>1</sub><i>C</i><sub>1</sub> лежит на прямой <i>AC</i>. Найдите угол <i>C</i> треугольника.
В трапеции <i>ABCD</i> с основаниями <i>AD</i> и <i>BC</i> лучи <i>AB</i> и <i>DC</i> пересекаются в точке <i>K</i>. Точки <i>P</i> и <i>Q</i> – центры описанных окружностей треугольников <i>ABD</i> и <i>BCD</i>. Докажите, что ∠<i>PKA</i> = ∠<i>QKD</i>.
В прямоугольном треугольнике <i>ABC</i> с прямым углом <i>C</i> угол <i>A</i> равен 30°, точка <i>I</i> – центр вписанной окружности <i>ABC, D</i> – точка пересечения отрезка <i>BI</i> с этой окружностью. Докажите, что отрезки <i>AI</i> и <i>CD</i> перпендикулярны.
В турнире каждый участник встретился с каждым из остальных один раз. Каждую встречу судил один арбитр, и все арбитры судили разное количество встреч. Игрок Иванов утверждает, что все его встречи судили разные арбитры. То же самое утверждают о себе игроки Петров и Сидоров. Может ли быть, что никто из них не ошибается?
Что больше: 2011<sup>2011</sup> + 2009<sup>2009</sup> или 2011<sup>2009</sup> + 2009<sup>2011</sup>?
Точки <i>M</i> и <i>N</i> – середины боковых сторон <i>AB</i> и <i>CD</i> трапеции <i>ABCD</i>. Перпендикуляр, опущенный из точки <i>M</i> на диагональ <i>AC</i>, и перпендикуляр, опущенный из точки <i>N</i> на диагональ <i>BD</i>, пересекаются в точке <i>P</i>. Докажите, что <i>PA = PD</i>.
Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?
Пётр родился в XIX веке, а его брат Павел – в XX веке. Однажды братья встретились на праздновании своего общего дня рождения. Пётр сказал: "Мой возраст равен сумме цифр года моего рождения". – "Мой тоже", – ответил Павел. На сколько лет Павел младше Петра?
Внутри выпуклого четырёхугольника <i>ABCD</i> взята такая точка <i>P</i>, что ∠<i>PBA</i> = ∠<i>PCD</i> = 90°. Точка <i>M</i> – середина стороны <i>AD</i>, причём <i>BM = CM</i>.
Докажите, что ∠<i>PAB</i> = ∠<i>PDC</i>.
Дана трапеция <i>ABCD</i> с основаниями <i>AD = a</i> и <i>BC = b</i>. Точки <i>M</i> и <i>N</i> лежат на сторонах <i>AB</i> и <i>CD</i> соответственно, причём отрезок <i>MN</i> параллелен основаниям трапеции. Диагональ <i>AC</i> пересекает этот отрезок в точке <i>O</i>. Найдите <i>MN</i>, если известно, что площади треугольников <i>AMO</i> и <i>CNO</i> равны.
Известно, что сумма любых двух из трёх квадратных трёхчленов <i>x</i>² + <i>ax + b</i>, <i>x</i>² + <i>cx + d</i>, <i>x</i>² + <i>ex + f</i> не имеет корней.
Может ли сумма всех этих трёхчленов иметь корни?
На стороне<i> AB </i>прямоугольника<i> ABCD </i>выбрана точка<i> M </i>. Через эту точку проведён перпендикуляр к прямой<i> CM </i>, который пересекает сторону <i> AD </i>в точке <i> E </i>. Точка<i> P </i> — основание перпендикуляра, опущенного из точки <i> M </i>на прямую <i> CE </i>. Найдите угол <i> APB </i>.
Через терминал оплаты на мобильный телефон можно перевести деньги, при этом взимается комиссия – натуральное число процентов. Федя положил целое количество рублей на мобильный телефон, и его счет пополнился на 847 рублей. Сколько денег положил на счет Федя, если известно, что комиссия менее 30%?