Олимпиадная задача по планиметрии для 9-11 классов от Заславского А. А.
Задача
В треугольнике ABC проведены биссектрисы BB1 и CC1. Известно, что центр описанной окружности треугольника BB1C1 лежит на прямой AC. Найдите угол C треугольника.
Решение
Продолжив луч BC до пересечения с описанной окружностью треугольника BB1C1, получим точку K (см. рис.). Вписанные углы ∠C1BB1 и ∠KBB1 равны (так как BB1 — биссектриса), значит, равны дуги, на которые они опираются, B1C1 = B1K. При этом точки K и C1 лежат на окружности (описанной вокруг треугольника BB1C1), центр которой принадлежит прямой AC. Следовательно, K и C1 симметричны друг другу относительно прямой AC. Получаем равенство трёх углов ∠BCC1 = ∠C1CB1 = ∠B1CK. Сумма этих углов равна 180°, стало быть, каждый из них равен 60°, и ∠ACB = ∠BCC 1 + ∠C1CB1 = 120°.

Ответ
120°.
Чтобы оставлять комментарии, войдите или зарегистрируйтесь