Олимпиадные задачи из источника «Прасолов В.В., Задачи по планиметрии» для 11 класса - сложность 4 с решениями

Прасолов В.В., Задачи по планиметрии

Назад

Докажите, что если вершины шестиугольника<i>ABCDEF</i>лежат на одной конике, то точки пересечения продолжений его противоположных сторон (т. е. прямых<i>AB</i>и<i>DE</i>,<i>BC</i>и<i>EF</i>,<i>CD</i>и<i>AF</i>) лежат на одной прямой (Паскаль).

В окружность <i>S</i> вписан шестиугольник <i>ABCDEF</i>. Докажите, что точки пересечения прямых <i>AB</i> и <i>DE, BC</i> и <i>EF, CD</i> и <i>FA</i> лежат на одной прямой.

Даны четыре окружности <i>S</i><sub>1</sub>,<i>S</i><sub>2</sub>,<i>S</i><sub>3</sub>,<i>S</i><sub>4</sub>. Пусть <i>S</i><sub>1</sub>и <i>S</i><sub>2</sub>пересекаются в точках <i>A</i><sub>1</sub>и <i>A</i><sub>2</sub>,<i>S</i><sub>2</sub>и <i>S</i><sub>3</sub> — в точках <i>B</i><sub>1</sub>и <i>B</i><sub>2</sub>,<i>S</i><sub>3</sub>и <i>S</i><sub>4</sub> — в точках <i>C</i><sub>1</sub>и <i>C</i><sub>2</sub>,&...

Окружность<i>S</i><sub>A</sub>проходит через точки<i>A</i>и<i>C</i>; окружность<i>S</i><sub>B</sub>проходит через точки<i>B</i>и<i>C</i>; центры обеих окружностей лежат на прямой<i>AB</i>. Окружность<i>S</i>касается окружностей<i>S</i><sub>A</sub>и<i>S</i><sub>B</sub>, а кроме того, она касается отрезка<i>AB</i>в точке<i>C</i><sub>1</sub>. Докажите, что<i>CC</i><sub>1</sub> — биссектриса треугольника<i>ABC</i>.

Две окружности, пересекающиеся в точке <i>A</i>, касаются окружности (или прямой) <i>S</i><sub>1</sub>в точках <i>B</i><sub>1</sub>и <i>C</i><sub>1</sub>, а окружности (или прямой) <i>S</i><sub>2</sub>в точках <i>B</i><sub>2</sub>и <i>C</i><sub>2</sub>(причем касание в <i>B</i><sub>2</sub>и <i>C</i><sub>2</sub>такое же, как в <i>B</i><sub>1</sub>и <i>C</i><sub>1</sub>). Докажите, что окружности, описанные вокруг треугольников<i>AB</i><sub>1</sub><i>C</i><sub>1</sub>и <i>AB</i><sub...

Через точки <i>A</i>и <i>B</i>проведены окружности <i>S</i><sub>1</sub>и <i>S</i><sub>2</sub>, касающиеся окружности <i>S</i>, и окружность <i>S</i><sub>3</sub>, перпендикулярная <i>S</i>. Докажите, что <i>S</i><sub>3</sub>образует равные углы с окружностями <i>S</i><sub>1</sub>и <i>S</i><sub>2</sub>.

Никакие три из четырех точек <i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>не лежат на одной прямой. Докажите, что угол между описанными окружностями треугольников<i>ABC</i>и <i>ABD</i>равен углу между описанными окружностями треугольников<i>ACD</i>и <i>BCD</i>.

В сегмент вписываются всевозможные пары пересекающихся окружностей, и для каждой пары через точки их пересечения проводится прямая. Докажите, что все эти прямые проходят через одну точку (см. задачу <a href="https://mirolimp.ru/tasks/156701">3.44</a>).

Найдите множество точек касания пар окружностей, касающихся сторон данного угла в данных точках <i>A</i>и <i>B</i>.

С помощью одного циркуля постройте окружность, в которую переходит данная прямая<i>AB</i>при инверсии относительно данной окружности с данным центром <i>O</i>.

Докажите, что при инверсии сохраняется угол между окружностями (между окружностью и прямой, между прямыми).

Выпуклый многоугольник разрезан на<i>p</i>треугольников так, что на их сторонах нет вершин других треугольников. Пусть<i>n</i>и<i>m</i>— количества вершин этих треугольников, лежащих на границе исходного многоугольника и внутри его. а) Докажите, что<i>p</i>=<i>n</i>+ 2<i>m</i>- 2. б) Докажите, что количество отрезков, являющихся сторонами полученных треугольников, равно 2<i>n</i>+ 3<i>m</i>- 3.

Дана полуокружность с диаметром<i>AB</i>. Для каждой точки <i>X</i>этой полуокружности на луче<i>XA</i>откладывается точка <i>Y</i>так, что<i>XY</i>=<i>kXB</i>. Найдите ГМТ <i>Y</i>.

Докажите, что любой выпуклый многоугольник $\Phi$содержит два непересекающихся многоугольника $\Phi_{1}^{}$и $\Phi_{2}^{}$, подобных $\Phi$с коэффициентом 1/2.

Три мухи равной массы ползают по сторонам треугольника так, что их центр масс остается на месте. Докажите, что он совпадает с точкой пересечения медиан треугольника<i>ABC</i>, если известно, что одна муха проползла по всей границе треугольника.

Найдите отношение сторон треугольника, одна из медиан которого делится вписанной окружностью на три равные части.

Пусть α, β и γ - углы треугольника ABC. Докажите, что а) <i>ctg</i>$\alpha$+<i>ctg</i>$\beta$+<i>ctg</i>$\gamma$= (<i>a</i><sup>2</sup>+<i>b</i><sup>2</sup>+<i>c</i><sup>2</sup>)/4<i>S</i>; б) <i>a</i><sup>2</sup><i>ctg</i>$\alpha$+<i>b</i><sup>2</sup><i>ctg</i>$\beta$+<i>c</i><sup>2</sup><i>ctg</i>$\gamma$= 4<i>S</i>.

Дан треугольник со сторонами <i>a, b</i> и <i>c</i>, причём  <i>a ≥ b ≥ c</i>;  <i>x, y</i> и <i>z</i> – углы некоторого другого треугольника. Докажите, что <div align="CENTER"><i>bc + ca – ab < bc</i> cos <i>x + ca</i> cos <i>y + ab</i> cos <i>z</i> ≤ ½ (<i>a</i>² + <i>b</i>² + <i>c</i>²). </div>

Пусть <i>a, b</i> и <i>c</i> – длины сторон треугольника площади <i>S</i>; α<sub>1</sub>, β<sub>1</sub> и γ<sub>1</sub> – углы некоторого другого треугольника. Докажите, что

<i>a</i>² ctg α<sub>1</sub> + <i>b</i>² ctg β<sub>1</sub> + <i>c</i>² ctg γ<sub>1</sub> ≥ 4<i>S</i>,  причём равенство достигается, только когда рассматриваемые треугольники подобны.

Пусть $\alpha$=$\pi$/7. Докажите, что ${\frac{1}{\sin\alpha }}$=${\frac{1}{\sin 2\alpha }}$+${\frac{1}{\sin 3\alpha }}$.

Докажите, что два четырехугольника подобны тогда и только тогда, когда у них равны четыре соответственных угла и соответственные углы между диагоналями.

На сторонах <i>BC</i>,<i>CA</i>,<i>AB</i>треугольника <i>ABC</i>взяты точки <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>,<i>C</i><sub>1</sub>. Докажите, что<div align="CENTER"> $\displaystyle {\frac{AC_1}{C_1B}}$<sup> . </sup>$\displaystyle {\frac{BA_1}{A_1C}}$<sup> . </sup>$\displaystyle {\frac{CB_1}{B_1A}}$ = $\displaystyle {\frac{\sin ACC_1}{\sin C_1CB}}$<sup> . </sup>$\displaystyle {\frac{\sin BAA_1}{\sin A_1AC}}$<sup> . </sup>$\displaystyle {\frac{\sin CBB_1}{\sin B_1BA}}$. </div>

Дан треугольник <i>ABC</i>. На прямых <i>AB</i>,<i>BC</i>и <i>CA</i>взяты точки <i>C</i><sub>1</sub>,<i>A</i><sub>1</sub>и <i>B</i><sub>1</sub>, причем <i>k</i>из них лежат на сторонах треугольника и 3 -<i>k</i> — на продолжениях сторон. Пусть<div align="CENTER"> <i>R</i> = $\displaystyle {\frac{BA_1}{CA_1}}$<sup> . </sup>$\displaystyle {\frac{CB_1}{AB_1}}$<sup> . </sup>$\displaystyle {\frac{AC_1}{BC_1}}$. </div> Докажите, что: а) точки <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>и <i>C</i><sub>1</sub>лежат на одной прямой...

В треугольнике<i>ABC</i>проведены триссектрисы (лучи, делящие углы на три равные части). Ближайшие к стороне<i>BC</i>триссектрисы углов<i>B</i>и<i>C</i>пересекаются в точке<i>A</i><sub>1</sub>; аналогично определим точки<i>B</i><sub>1</sub>и<i>C</i><sub>1</sub>(см. рис.). Докажите, что треугольник <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>равносторонний.<div align="center"><img src="/storage/problem-media/56893/problem_56893_img_2.gif" border="1"></div>

Докажите, что любой выпуклый многоугольник можно разрезать двумя взаимно перпендикулярными прямыми на четыре фигуры равной площади.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка