Олимпиадные задачи из источника «глава 26. Системы точек и отрезков. Примеры и контрпримеры»
глава 26. Системы точек и отрезков. Примеры и контрпримеры
НазадАрена цирка освещается <i>n</i> различными прожекторами. Каждый прожектор освещает выпуклую фигуру. Известно, что если выключить любой прожектор, то арена будет по-прежнему полностью освещена, а если выключить любые два прожектора, то арена будет освещена не полностью. При каких <i>n</i> это возможно?
Обязательно ли треугольник равнобедренный, если центр его вписанной окружности одинаково удален от середин двух сторон?
На плоскости расположено несколько непересекающихся отрезков. Всегда ли можно соединить концы некоторых из них отрезками так, чтобы получилась замкнутая несамопересекающаяся ломаная?
Может ли конечный набор точек содержать для каждой своей точки ровно 100 точек, удаленных от нее на расстояние 1?
На бесконечном листе клетчатой бумаги (размер клетки 1×1) укладываются кости домино размером 1×2 так, что они накрывают все клетки. Можно ли при этом добиться того, чтобы любая прямая, идущая по линиям сетки, разрезала лишь конечное число костей?
В остроугольном треугольнике<i>ABC</i>проведены медиана<i>AM</i>, биссектриса<i>BK</i>и высота<i>CH</i>. Может ли площадь треугольника, образованного точками пересечения этих отрезков, быть больше0, 499<i>S</i><sub>ABC</sub>?
Существуют ли на плоскости три такие точки <i>A</i>,<i>B</i>и <i>C</i>, что для любой точки <i>X</i>длина хотя бы одного из отрезков<i>XA</i>,<i>XB</i>и <i>XC</i>иррациональна?
Пусть<i>n</i>$\ge$3. Существуют ли <i>n</i>точек, не лежащих на одной прямой, попарные расстояния между которыми иррациональны, а площади всех треугольников с вершинами в них рациональны?
Список упорядоченных в порядке возрастания длин сторон и диагоналей одного выпуклого четырехугольника совпадает с таким же списком для другого четырехугольника. Обязательно ли эти четырехугольники равны?
В выпуклом четырехугольнике<i>ABCD</i>равны стороны<i>AB</i>и <i>CD</i>и углы <i>A</i>и <i>C</i>. Обязательно ли этот четырехугольник параллелограмм?
Существует ли треугольник, у которого все высоты меньше 1 см, а площадь больше 1 м<sup>2</sup>?
На плоскости расположено<i>n</i>$\ge$5 окружностей так, что любые три из них имеют общую точку. Докажите, что тогда и все окружности имеют общую точку.
На окружности отметили 4<i>n</i>точек и окрасили их через одну в красный и синий цвета. Точки каждого цвета разбили на пары, а точки каждой пары соединили отрезками того же цвета. Докажите, что если никакие три отрезка не пересекаются в одной точке, то найдется по крайней мере <i>n</i>точек пересечения красных отрезков с синими.
Точка <i>O</i>, лежащая внутри выпуклого многоугольника<i>A</i><sub>1</sub>...<i>A</i><sub>n</sub>, обладает тем свойством, что любая прямая<i>OA</i><sub>i</sub>содержит еще одну вершину <i>A</i><sub>j</sub>. Докажите, что кроме точки <i>O</i>никакая другая точка не обладает этим свойством.
Можно ли нарисовать на плоскости шесть точек и так соединить их непересекающимися отрезками, что каждая точка будет соединена ровно с четырьмя другими?
Постройте замкнутую шестизвенную ломаную, пересекающую каждое свое звено ровно один раз.
Докажите, что для любого натурального <i>N</i>существует <i>N</i>точек, никакие три из которых не лежат на одной прямой и все попарные расстояния между которыми являются целыми числами.
На плоскости дано 22 точки, причем никакие три из них не лежат на одной прямой. Докажите, что их можно разбить на пары так, чтобы отрезки, заданные парами, пересекались по крайней мере в пяти точках.
На плоскости дано 4000 точек, никакие три из которых не лежат на одной прямой. Докажите, что существует 1000 непересекающихся четырехугольников (возможно, невыпуклых) с вершинами в этих точках.
На плоскости дано<i>n</i>$\ge$3 точек. Пусть <i>d</i> — наибольшее расстояние между парами этих точек. Докажите, что имеется не более <i>n</i>пар точек, расстояние между которыми равно <i>d</i>.
На плоскости дано 400 точек. Докажите, что различных расстояний между ними не менее 15.
На плоскости дано<i>n</i>точек, причем из любой четверки этих точек можно выбросить одну точку так, что оставшиеся точки будут лежать на одной прямой. Докажите, что из данных точек можно выбросить одну точку так, что все оставшиеся точки будут лежать на одной прямой.
а) Архитектор хочет расположить четыре высотных здания так, что, гуляя по городу, можно увидеть их шпили в произвольном порядке (т. е. для любого набора номеров зданий <i>i</i>,<i>j</i>,<i>k</i>,<i>l</i>можно стоя в некоторой точке и поворачиваясь в направлении к пок или к противк часовой стрелки, увидеть сначала шпиль здания <i>i</i>, затем <i>j</i>,<i>k</i>,<i>l</i>). Удастся ли ему это сделать? б) Тот же вопрос для пяти зданий.