Олимпиадные задачи из источника «Прасолов В.В., Задачи по планиметрии» для 9 класса - сложность 3 с решениями
Прасолов В.В., Задачи по планиметрии
НазадВ сегмент вписываются всевозможные пары касающихся окружностей. Найдите множество их точек касания.
Докажите, что из всех треугольников данного периметра 2<i>p</i> равносторонний имеет наибольшую плошадь.
Квадратное поле разбито на 100 одинаковых участков, 9 из которых поросли бурьяном. Известно, что бурьян за год распространяется на те и только те участки, у каждого из которых не менее двух соседних участков уже поражены бурьяном (участки соседние, если они имеют общую сторону). Докажите, что полностью все поле бурьяном не зарастёт.
В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик <i>A</i> прыгает через кузнечика <i>B</i>, то после прыжка он оказывается от <i>B</i> на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?
Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят <i>n</i>, расположенные в порядке возрастания (<i>ряд Фарея</i>). Пусть <sup><i>a</i></sup>/<sub><i>b</i></sub> и <sup><i>c</i></sup>/<sub><i>d</i></sub> – какие-то два соседних числа (дроби несократимы). Доказать, что |<i>bc – ad</i>| = 1.
Доказать, что можно расставить в вершинах правильного <i>n</i>-угольника действительные числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>, все отличные от 0, так, чтобы для любого правильного <i>k</i>-угольника, все вершины которого являются вершинами исходного <i>n</i>-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.
Имеется два правильных пятиугольника с одной общей вершиной. Вершины каждого пятиугольника нумеруются по часовой стрелке цифрами от 1 до 5, причём в общей вершине ставится цифра 1. Вершины с одинаковыми номерами соединены прямыми. Доказать, что полученные четыре прямые пересекаются в одной точке.
В плоскости дан треугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub> и прямая <i>l</i> вне его, образующая с продолжением сторон треугольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>A</i><sub>2</sub><i>A</i><sub>3</sub>, <i>A</i><sub>3</sub><i>A</i><sub>1</sub> соответственно углы α<sub>3</sub>, α<sub>1</sub>, α<sub>2</sub>. Через точки <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, <i>A</i><sub>3</sub> проводятся прямые, образующие с &l...
Доказать, что если многоугольник имеет несколько осей симметрии, то все они пересекаются в одной точке.
На сколько частей разделяют<i>n</i>-угольник его диагонали, если никакие три диагонали не пересекаются в одной точке?
На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.
Докажите, что точки, соответствующие комплексным числам<i>a</i>,<i>b</i>,<i>c</i>, лежат на одной прямой тогда и только тогда, когда число${\frac{a-b}{a-c}}$, называемое<i>простым отношением</i>трех комплексных чисел, вещественно. б) Докажите, что точки, соответствующие комплексным числам<i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>, лежат на одной окружности (или на одной прямой) тогда и только тогда, когда число${\frac{a-c}{a-d}}$:${\frac{b-c}{b-d}}$, называемое<i>двойным отношением</i>четырех комплексных чисел, вещественно.
Пусть точки<i>A</i><sup></sup>,<i>B</i><sup></sup>,<i>C</i><sup></sup>,<i>D</i><sup></sup>являются образами точек<i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>при инверсии. Докажите, что: а)${\frac{AC}{AD}}$:${\frac{BC}{BD}}$=${\frac{A^C^}{A^D^}}$:${\frac{B^C^}{B^D^}}$; б)$\angle$(<i>DA</i>,<i>AC</i>) -$\angle$(<i>DB</i>,<i>BC</i>) =$\angle$(<i>D</i><sup></sup><i>B</i><sup></sup>,<i>B</i><sup></sup><i>C</i><sup></sup>) -$\angle$(<i>D</i><sup>*</sup><i>A</i><sup>...
а) Пусть$\varepsilon$=${\frac{1}{2}}$+${\frac{i\sqrt{3}}{2}}$. Докажите, что точки<i>a</i>,<i>b</i>,<i>c</i>являются вершинами правильного треугольника тогда и только тогда, когда<i>a</i>+$\varepsilon^{2}{}$<i>b</i>+$\varepsilon^{4}{}$<i>c</i>= 0 или<i>a</i>+$\varepsilon^{4}{}$<i>b</i>+$\varepsilon^{2}{}$<i>c</i>= 0. б) Докажите, что точки<i>a</i>,<i>b</i>,<i>c</i>являются вершинами правильного треугольника тогда и только тогда, когда<i>a</i><sup>2</sup>+<i>b</i><sup>2</sup>+<i>c</i><sup>2</sup>=<i>ab</i>+<i>bc</i>+<i>ac</i>.
На сторонах<i>AB</i>,<i>BC</i>и <i>AC</i>треугольника<i>ABC</i>даны точки <i>M</i>,<i>N</i>и <i>P</i>соответственно. Докажите: а) если точки <i>M</i><sub>1</sub>,<i>N</i><sub>1</sub>и <i>P</i><sub>1</sub>симметричны точкам <i>M</i>,<i>N</i>и <i>P</i>относительно середин соответствующих сторон, то<i>S</i><sub>MNP</sub>=<i>S</i><sub>M<sub>1</sub>N<sub>1</sub>P<sub>1</sub></sub>. б) если <i>M</i><sub>1</sub>,<i>N</i><sub>1</sub>и <i>P</i><sub>1</sub> ...
В параллелограмме<i>ABCD</i>точки <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>,<i>C</i><sub>1</sub>,<i>D</i><sub>1</sub>лежат соответственно на сторонах<i>AB</i>,<i>BC</i>,<i>CD</i>,<i>DA</i>. На сторонах<i>A</i><sub>1</sub><i>B</i><sub>1</sub>,<i>B</i><sub>1</sub><i>C</i><sub>1</sub>,<i>C</i><sub>1</sub><i>D</i><sub>1</sub>,<i>D</i><sub>1</sub><i>A</i><sub>1</sub>четырехугольника<i>A</i><sub>1</sub><i>B</i><sub&...
а) Докажите, что существует единственное аффинное преобразование, которое переводит данную точку <i>O</i>в данную точку <i>O'</i>, а данный базис векторов <b>e</b><sub>1</sub>,<b>e</b><sub>2</sub> — в данный базис <b>e</b><sub>1</sub>',<b>e</b><sub>2</sub>'. б) Даны два треугольника<i>ABC</i>и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>. Докажите, что существует единственное аффинное преобразование, переводящее точку <i>A</i>в <i>A</i><sub>1</sub>,<i>B</i> — в <i>B</i><sub>1</sub>,<i&...
Пусть <i>A'</i>,<i>B'</i>,<i>C'</i> — образы точек <i>A</i>,<i>B</i>,<i>C</i>при аффинном преобразовании <i>L</i>. Докажите, что если <i>C</i>делит отрезок<i>AB</i>в отношении<i>AC</i>:<i>CB</i>=<i>p</i>:<i>q</i>, то <i>C'</i>делит отрезок<i>A'B'</i>в том же отношении.
Докажите, что если <i>L</i> — аффинное преобразование, то а)<i>L</i>($\overrightarrow{0}$) =$\overrightarrow{0}$; б)<i>L</i>(<b>a</b>+<b>b</b>) =<i>L</i>(<b>a</b>) +<i>L</i>(<b>b</b>); в)<i>L</i>(<i>k</i><b>a</b>) =<i>kL</i>(<b>a</b>).
Даны четыре окружности, причем окружности <i>S</i><sub>1</sub>и <i>S</i><sub>3</sub>пересекаются с обеими окружностями <i>S</i><sub>2</sub>и <i>S</i><sub>4</sub>. Докажите, что если точки пересечения <i>S</i><sub>1</sub>с <i>S</i><sub>2</sub>и <i>S</i><sub>3</sub>с <i>S</i><sub>4</sub>лежат на одной окружности или прямой, то и точки пересечения <i>S</i><sub>1</sub>с <i>S</i><sub>4</sub>и <i>S</i><sub>2</sub>с <i>S</i><sub>3</sub>лежат на одной окружности или прямой (рис.). <div align="center"&g...
Докажите, что инверсия с центром в вершине <i>A</i>равнобедренного треугольника<i>ABC</i>(<i>AB</i>=<i>AC</i>) и степенью<i>AB</i><sup>2</sup>переводит основание<i>BC</i>треугольника в дугу<i>BC</i>описанной окружности.
С помощью одного циркуля
а) постройте точки пересечения данной окружности <i>S</i> и прямой, проходящей через данные точки <i>A</i> и <i>B</i>;
б) постройте точку пересечения прямых <i>A</i><sub>1</sub><i>B</i><sub>1</sub> и <i>A</i><sub>2</sub><i>B</i><sub>2</sub>, где <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>A</i><sub>2</sub> и <i>B</i><sub>2</sub> – данные точки.
Постройте окружность, проходящую через две данные точки и касающуюся данной окружности (или прямой).
Постройте образ точки <i>A</i>при инверсии относительно окружности <i>S</i>с центром <i>O</i>.
Докажите, что касающиеся окружности (окружность и прямая) переходят при инверсии в касающиеся окружности или в окружность и прямую, или в пару параллельных прямых.