Олимпиадные задачи из источника «Прасолов В.В., Задачи по планиметрии» для 8 класса - сложность 5 с решениями
Прасолов В.В., Задачи по планиметрии
НазадДаны прямая <i>l</i>, окружность и точка <i>M</i>, лежащая на окружности и не лежащая на прямой <i>l</i>. Пусть<i>P</i><sub>M</sub> — проектирование прямой<i>l</i>на данную окружность из точки<i>M</i>(точка <i>X</i>прямой отображается в отличную от <i>M</i>точку пересечения прямой<i>XM</i>с окружностью),<i>R</i> — движение плоскости, сохраняющее данную окружность (т. е. поворот плоскости вокруг центра окружности или симметрия относительно диаметра). Докажите, что композиция<i>P</i><sub>M</sub><sup>-1</sup><tt>o</tt><i>R</i><tt>o</tt><i>P</i><sub>M</sub>является прое...
Даны прямая <i>l</i>, окружность и точки <i>M</i>,<i>N</i>, лежащие на окружности и не лежащие на прямой <i>l</i>. Рассмотрим отображение <i>P</i>прямой <i>l</i>на себя, являющееся композицией проектирования прямой <i>l</i>на данную окружность из точки <i>M</i>и проектирования окружности на прямую <i>l</i>из точки <i>N</i>. (Если точка <i>X</i>лежит на прямой <i>l</i>, то<i>P</i>(<i>X</i>) есть пересечение прямой<i>NY</i>с прямой <i>l</i>, где <i>Y</i> — отличная от <i>M</i>точка пересечения прямой<i>MX</i>с данной окружностью.) Докажите, что преобразование <i>...
Пусть<i>L</i>— взаимно однозначное отображение плоскости в себя, переводящее любую окружность в некоторую окружность. Докажите, что<i>L</i> — аффинное преобразование.
Пусть<i>L</i>— взаимно однозначное отображение плоскости в себя. Предположим, что оно обладает следующим свойством: если три точки лежат на одной прямой, то их образы тоже лежат на одной прямой. Докажите, что тогда<i>L</i> — аффинное преобразование.
На плоскости даны две прямые, пересекающиеся под острым углом. В направлении одной из прямых производится сжатие с коэффициентом 1/2. Докажите, что найдется точка, расстояние от которой до точки пересечения прямых увеличится.
На плоскости даны три вектора<b>a</b>,<b>b</b>,<b>c</b>, причем$\alpha$<b>a</b>+$\beta$<b>b</b>+$\gamma$<b>c</b>= 0. Докажите, что эти векторы аффинным преобразованием можно перевести в векторы равной длины тогда и только тогда, когда из отрезков с длинами |$\alpha$|, |$\beta$|, |$\gamma$| можно составить треугольник.
Докажите, что любой выпуклый шестиугольник<i>ABCDEF</i>, в котором каждая сторона параллельна противоположной стороне, аффинным преобразованием можно перевести в шестиугольник с равными диагоналями<i>AD</i>,<i>BE</i>и<i>CF</i>.
Докажите, что любой выпуклый четырехугольник, кроме трапеции, аффинным преобразованием можно перевести в четырехугольник, у которого противоположные углы прямые.
Докажите, что если <i>M'</i>и <i>N'</i> — образы многоугольников <i>M</i>и <i>N</i>при аффинном преобразовании, то отношение площадей <i>M</i>и <i>N</i>равно отношению площадей <i>M'</i>и <i>N'</i>.
Докажите, что если аффинное преобразование переводит некоторую окружность в себя, то оно является либо поворотом, либо симметрией.
Докажите, что любое аффинное преобразование можно представить в виде композиции растяжения (сжатия) и аффинного преобразования, переводящего любой треугольник в подобный ему треугольник.
На плоскости дан многоугольник<i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>n</sub>и точка<i>O</i>внутри его. Докажите, что равенства<div align="CENTER"><table cellpadding="0" width="100%" align="CENTER"> <tr valign="MIDDLE"> <td nowrap align="CENTER">$\displaystyle \overrightarrow{OA_1}$ + $\displaystyle \overrightarrow{OA_3}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_2}$,</td> <td nowrap width="10" align="RIGHT"> </td></tr> <tr valign="MIDDLE"> <td nowrap align="CENTER"> 1$\displaystyle \overrightarrow{OA...
Докажите, что для любого натурального <i>N</i>существует <i>N</i>точек, никакие три из которых не лежат на одной прямой и все попарные расстояния между которыми являются целыми числами.
Докажите, что к квадрату нельзя приложить более 8 не налегающих друг на друга квадратов.
Имеется неограниченное количество плиток в форме многоугольника<i>M</i>. Будем говорить, что из этих плиток можно сложить паркет, если ими можно покрыть круг сколь угодно большого радиуса так, чтобы не было ни просветов, ни перекрытий. а) Докажите, что если<i>M</i> — выпуклый<i>n</i>-угольник, где<i>n</i>$\ge$7, то паркет сложить нельзя. б) Приведите пример такого выпуклого пятиугольника с попарно непараллельными сторонами, что паркет сложить можно.
а) Можно ли квадрат6×6 замостить костями домино1×2 так, чтобы не было к швак, т. е. прямой, не разрезающей костей? б) Докажите, что любой прямоугольник<i>m</i>×<i>n</i>, где<i>m</i>и<i>n</i>больше 6 и<i>mn</i>четно, можно замостить костями домино так, чтобы не было к швак. в) Докажите, что прямоугольник6×8 можно замостить костями домино так, чтобы не было к швак.
На круглом столе радиуса<i>R</i>расположено без наложений<i>n</i>круглых монет радиуса<i>r</i>, причем больше нельзя положить ни одной монеты. Докажите, что<i>R</i>/<i>r</i>$\le$2$\sqrt{n}$+ 1.
Докажите, что любые<i>n</i>точек на плоскости всегда можно накрыть несколькими непересекающимися кругами так, что сумма их диаметров меньше<i>n</i>и расстояние между любыми двумя из них больше 1.
а) Квадрат со стороной 1 покрыт несколькими меньшими квадратами со сторонами, параллельными его сторонам. Докажите, что среди них можно выбрать непересекающиеся квадраты, сумма площадей которых не меньше 1/9. б) Площадь объединения нескольких кругов равна 1. Докажите, что из них можно выбрать несколько попарно непересекающихся кругов с общей площадью не менее 1/9.
Прямоугольник разрезан на прямоугольники, длина одной из сторон каждого из которых — целое число. Докажите, что длина одной из сторон исходного прямоугольника — целое число.
а) Докажите, что из пяти попарно различных по величине квадратов нельзя сложить прямоугольник. б) Докажите, что из шести попарно различных по величине квадратов нельзя сложить прямоугольник.
Квадратный лист бумаги разрезают прямой на две части. Одну из полученных частей разрезают на две части, и так делают несколько раз. Какое наименьшее число разрезаний нужно сделать, чтобы среди полученных частей оказалось 100 двадцатиугольников?
Можно ли разрезать правильный треугольник на 1000000 выпуклых многоугольников так, чтобы любая прямая имела общие точки не более чем с 40 из них?
Докажите, что выпуклый 22-угольник нельзя разрезать диагоналями на 7 пятиугольников.
Докажите, что семиугольник нельзя разрезать на выпуклые шестиугольники.