Назад
Задача

Прямоугольник разрезан на прямоугольники, длина одной из сторон каждого из которых — целое число. Докажите, что длина одной из сторон исходного прямоугольника — целое число.

Решение

Введем систему координат с началом в одной из вершин исходного прямоугольника и осями, направленными по его сторонам. Разрежем координатную плоскость прямымиx=n/2 иy=m/2, гдеmиn — целые числа, и раскрасим полученные части в шахматном порядке. Если стороны прямоугольника параллельны осям координат, а длина одной из его сторон равна 1, то суммы площадей его белых и черных частей равны. В самом деле, при симметрии относительно средней линии прямоугольника белые части переходят в черные и наоборот. Для прямоугольника с целочисленной стороной справедливо аналогичное утверждение, потому что его можно разрезать на прямоугольники со стороной 1. Остается доказать, что если суммы площадей белых и черных частей равны, то одна из сторон прямоугольника целочисленная. Предположим, что обе стороны исходного прямоугольника не целые. Прямыеx=mиy=nотрезают от него прямоугольники, одна из сторон каждого из которых равна 1, и прямоугольник, обе стороны которого меньше 1. Легко проверить, что в последнем прямоугольнике суммы площадей белых и черных частей не могут быть равны.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет