Олимпиадные задачи из источника «Прасолов В.В., Задачи по планиметрии» для 9 класса - сложность 1-3 с решениями
Прасолов В.В., Задачи по планиметрии
НазадВ сегмент вписываются всевозможные пары касающихся окружностей. Найдите множество их точек касания.
Точка <i>O</i>, лежащая внутри правильного шестиугольника, соединена с вершинами. Возникшие при этом шесть треугольников раскрашены попеременно в красный и синий цвет. Докажите, что сумма площадей красных треугольников равна сумме площадей синих.
Пусть <i>K, L, M, N</i> – середины сторон <i>AB, BC, CD, AD</i> выпуклого четырёхугольника <i>ABCD</i>; отрезки <i>KM</i> и <i>LN</i> пересекаются в точке <i>O</i>.
Докажите, что <i>S<sub>AKON</sub> + S<sub>CLOM</sub> = S<sub>BKOL</sub> + S<sub>DNOM</sub></i>.
Внутри параллелограмма <i>ABCD</i> выбрана точка <i>O</i>, причём ∠<i>OAD</i> = ∠<i>OCD</i>. Докажите, что ∠<i>OBC</i> = ∠<i>ODC</i>.
Докажите, что из всех треугольников данного периметра 2<i>p</i> равносторонний имеет наибольшую плошадь.
Докажите, что отрезки, соединяющие вершины треугольника с точками касания противоположных сторон с соответствующими вневписанными окружностями, пересекаются в одной точке {(точка Нагеля))
Дан выпуклый четырёхугольник и точка <i>M</i> внутри него. Доказать, что сумма расстояний от точки <i>M</i> до вершин четырёхугольника меньше суммы попарных расстояний между вершинами четырёхугольника.
Квадратное поле разбито на 100 одинаковых участков, 9 из которых поросли бурьяном. Известно, что бурьян за год распространяется на те и только те участки, у каждого из которых не менее двух соседних участков уже поражены бурьяном (участки соседние, если они имеют общую сторону). Докажите, что полностью все поле бурьяном не зарастёт.
На плоскости отмечена точка <i>O</i>. Можно ли так расположить на плоскости: а) 5 кругов; б) 4 круга, не покрывающих точку <i>O</i>, чтобы каждый луч с началом в точке <i>O</i> пересекал не менее двух кругов?
Доказать, что в произвольном выпуклом 2<i>n</i>-угольнике найдётся диагональ, не параллельная ни одной из его сторон.
В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик <i>A</i> прыгает через кузнечика <i>B</i>, то после прыжка он оказывается от <i>B</i> на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?
Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят <i>n</i>, расположенные в порядке возрастания (<i>ряд Фарея</i>). Пусть <sup><i>a</i></sup>/<sub><i>b</i></sub> и <sup><i>c</i></sup>/<sub><i>d</i></sub> – какие-то два соседних числа (дроби несократимы). Доказать, что |<i>bc – ad</i>| = 1.
Доказать, что можно расставить в вершинах правильного <i>n</i>-угольника действительные числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>, все отличные от 0, так, чтобы для любого правильного <i>k</i>-угольника, все вершины которого являются вершинами исходного <i>n</i>-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.
Имеется два правильных пятиугольника с одной общей вершиной. Вершины каждого пятиугольника нумеруются по часовой стрелке цифрами от 1 до 5, причём в общей вершине ставится цифра 1. Вершины с одинаковыми номерами соединены прямыми. Доказать, что полученные четыре прямые пересекаются в одной точке.
Сколько осей симметрии может иметь семиугольник?
В плоскости дан треугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub><i>A</i><sub>3</sub> и прямая <i>l</i> вне его, образующая с продолжением сторон треугольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>A</i><sub>2</sub><i>A</i><sub>3</sub>, <i>A</i><sub>3</sub><i>A</i><sub>1</sub> соответственно углы α<sub>3</sub>, α<sub>1</sub>, α<sub>2</sub>. Через точки <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, <i>A</i><sub>3</sub> проводятся прямые, образующие с &l...
На окружности даны точки <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>,..., <i>A</i><sub>16</sub>. Построим все возможные выпуклые многоугольники, вершины которых находятся среди точек <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>,..., <i>A</i><sub>16</sub>. Разобьём эти многоугольники на две группы. В первую группу будут входить все многоугольники, у которых <i>A</i><sub>1</sub> является вершиной. Во вторую группу входят все многоугольники, у которых <i>A</i><sub>1</sub> в число вершин не входит. В какой группе больше многоугольников?
Доказать, что если многоугольник имеет несколько осей симметрии, то все они пересекаются в одной точке.
На сколько частей разделяют<i>n</i>-угольник его диагонали, если никакие три диагонали не пересекаются в одной точке?
На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.
Докажите, что точки, соответствующие комплексным числам<i>a</i>,<i>b</i>,<i>c</i>, лежат на одной прямой тогда и только тогда, когда число${\frac{a-b}{a-c}}$, называемое<i>простым отношением</i>трех комплексных чисел, вещественно. б) Докажите, что точки, соответствующие комплексным числам<i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>, лежат на одной окружности (или на одной прямой) тогда и только тогда, когда число${\frac{a-c}{a-d}}$:${\frac{b-c}{b-d}}$, называемое<i>двойным отношением</i>четырех комплексных чисел, вещественно.
Пусть точки<i>A</i><sup></sup>,<i>B</i><sup></sup>,<i>C</i><sup></sup>,<i>D</i><sup></sup>являются образами точек<i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>при инверсии. Докажите, что: а)${\frac{AC}{AD}}$:${\frac{BC}{BD}}$=${\frac{A^C^}{A^D^}}$:${\frac{B^C^}{B^D^}}$; б)$\angle$(<i>DA</i>,<i>AC</i>) -$\angle$(<i>DB</i>,<i>BC</i>) =$\angle$(<i>D</i><sup></sup><i>B</i><sup></sup>,<i>B</i><sup></sup><i>C</i><sup></sup>) -$\angle$(<i>D</i><sup>*</sup><i>A</i><sup>...
а) Пусть$\varepsilon$=${\frac{1}{2}}$+${\frac{i\sqrt{3}}{2}}$. Докажите, что точки<i>a</i>,<i>b</i>,<i>c</i>являются вершинами правильного треугольника тогда и только тогда, когда<i>a</i>+$\varepsilon^{2}{}$<i>b</i>+$\varepsilon^{4}{}$<i>c</i>= 0 или<i>a</i>+$\varepsilon^{4}{}$<i>b</i>+$\varepsilon^{2}{}$<i>c</i>= 0. б) Докажите, что точки<i>a</i>,<i>b</i>,<i>c</i>являются вершинами правильного треугольника тогда и только тогда, когда<i>a</i><sup>2</sup>+<i>b</i><sup>2</sup>+<i>c</i><sup>2</sup>=<i>ab</i>+<i>bc</i>+<i>ac</i>.
а) Докажите, что все окружности и прямые задаются уравнениями вида<div align="CENTER"> <i>Az</i>$\displaystyle \bar{z}$ + <i>cz</i> + $\displaystyle \bar{c}$$\displaystyle \bar{z}$ + <i>D</i> = 0, </div>где<i>A</i>и<i>D</i> — вещественные числа, а<i>c</i> — комплексное число. Наоборот, докажите, что любое уравнение такого вида задает либо окружность, либо прямую, либо точку, либо пустое множество. б) Докажите, что при инверсии окружности и прямые переходят в окружности и прямые.
Докажите, что прямая, проходящая через точки<i>a</i><sub>1</sub>и<i>a</i><sub>2</sub>, задаётся уравнением<div align="CENTER"> <i>z</i>($\displaystyle \bar{a}{1}^{}$ - $\displaystyle \bar{a}{2}^{}$) - $\displaystyle \bar{z}$(<i>a</i><sub>1</sub> - <i>a</i><sub>2</sub>) + (<i>a</i><sub>1</sub>$\displaystyle \bar{a}{2}^{}$ - $\displaystyle \bar{a}{1}^{}$<i>a</i><sub>2</sub>) = 0. </div>