Олимпиадные задачи из источника «Прасолов В.В., Задачи по планиметрии» для 8 класса - сложность 4 с решениями

Прасолов В.В., Задачи по планиметрии

Назад

Два неравных картонных диска разделены на 1965 равных секторов. На каждом из дисков произвольно выбраны 200 секторов и раскрашены в красный цвет. Меньший диск наложен на больший, так что их центры совпадают, а секторы целиком лежат один против другого. Меньший диск поворачивают на всевозможные углы, кратные${\frac{1}{1965}}$части окружности, оставляя больший диск неподвижным. Доказать, что по крайней мере при 60 положениях на дисках совпадут не более 20 красных секторов.

Точки <i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>лежат на одной прямой. Докажите, что если (<i>ABCD</i>) = 1, то либо<i>A</i>=<i>B</i>, либо<i>C</i>=<i>D</i>.

Докажите, что преобразование <i>P</i>числовой прямой является проективным тогда и только тогда, когда оно представляется в виде<div align="CENTER"> <i>P</i>(<i>x</i>) = $\displaystyle {\frac{ax+b}{cx+d}}$, </div>где <i>a</i>,<i>b</i>,<i>c</i>,<i>d</i> — такие числа, что<i>ad</i>-<i>bc</i>$\ne$0. (Такие отображения называют<i>дробно-линейными</i>.)

Дано отображение прямой <i>a</i>на прямую <i>b</i>, сохраняющее двойное отношение любой четверки точек. Докажите, что это отображение проективно.

Докажите, что нетождественное проективное преобразование прямой имеет не более двух неподвижных точек.

Докажите, что проективное преобразование прямой однозначно определяется образами трех произвольных точек.

Докажите, что если(<i>ABCX</i>) = (<i>ABCY</i>), то<i>X</i>=<i>Y</i>(все точки попарно различны, кроме, быть может, точек <i>X</i>и <i>Y</i>, и лежат на одной прямой).

а) Даны прямые <i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>, проходящие через одну точку, и прямая <i>l</i>, через эту точку не проходящая. Пусть <i>A</i>,<i>B</i>,<i>C</i>,<i>D</i> — точки пересечения прямой <i>l</i>с прямыми <i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>соответственно. Докажите, что(<i>abcd</i>)= (<i>ABCD</i>). б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях.

Докажите, что существует проективное отображение, которое три данные точки одной прямой переводит в три данные точки другой прямой.

Докажите, что любое аффинное преобразование можно представить в виде композиции двух растяжений и аффинного преобразования, переводящего любой треугольник в подобный ему треугольник.

Докажите, что если при аффинном (не тождественном) преобразовании <i>L</i>каждая точка некоторой прямой <i>l</i>переходит в себя, то все прямые вида<i>ML</i>(<i>M</i>), где в качестве <i>M</i>берутся произвольные точки, не лежащие на прямой <i>l</i>, параллельны друг другу.

Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон. Докажите, что аффинным преобразованием этот пятиугольник можно перевести в правильный пятиугольник.

Докажите, что если <i>n</i> точек не лежат на одной прямой, то среди прямых, их соединяющих, не менее <i>n</i> различных.

Обязательно ли треугольник равнобедренный, если центр его вписанной окружности одинаково удален от середин двух сторон?

На плоскости расположено несколько непересекающихся отрезков. Всегда ли можно соединить концы некоторых из них отрезками так, чтобы получилась замкнутая несамопересекающаяся ломаная?

Может ли конечный набор точек содержать для каждой своей точки ровно 100 точек, удаленных от нее на расстояние 1?

На бесконечном листе клетчатой бумаги (размер клетки 1×1) укладываются кости домино размером 1×2 так, что они накрывают все клетки. Можно ли при этом добиться того, чтобы любая прямая, идущая по линиям сетки, разрезала лишь конечное число костей?

В остроугольном треугольнике<i>ABC</i>проведены медиана<i>AM</i>, биссектриса<i>BK</i>и высота<i>CH</i>. Может ли площадь треугольника, образованного точками пересечения этих отрезков, быть больше0, 499<i>S</i><sub>ABC</sub>?

На плоскости расположено<i>n</i>$\ge$5 окружностей так, что любые три из них имеют общую точку. Докажите, что тогда и все окружности имеют общую точку.

На окружности отметили 4<i>n</i>точек и окрасили их через одну в красный и синий цвета. Точки каждого цвета разбили на пары, а точки каждой пары соединили отрезками того же цвета. Докажите, что если никакие три отрезка не пересекаются в одной точке, то найдется по крайней мере <i>n</i>точек пересечения красных отрезков с синими.

Точка <i>O</i>, лежащая внутри выпуклого многоугольника<i>A</i><sub>1</sub>...<i>A</i><sub>n</sub>, обладает тем свойством, что любая прямая<i>OA</i><sub>i</sub>содержит еще одну вершину <i>A</i><sub>j</sub>. Докажите, что кроме точки <i>O</i>никакая другая точка не обладает этим свойством.

На плоскости дано 22 точки, причем никакие три из них не лежат на одной прямой. Докажите, что их можно разбить на пары так, чтобы отрезки, заданные парами, пересекались по крайней мере в пяти точках.

На плоскости дано 4000 точек, никакие три из которых не лежат на одной прямой. Докажите, что существует 1000 непересекающихся четырехугольников (возможно, невыпуклых) с вершинами в этих точках.

На плоскости дано<i>n</i>$\ge$3 точек. Пусть <i>d</i> — наибольшее расстояние между парами этих точек. Докажите, что имеется не более <i>n</i>пар точек, расстояние между которыми равно <i>d</i>.

Прямоугольник покрыт в два слоя карточками1×2 (над каждой клеткой лежат ровно две карточки). Докажите, что карточки можно разбить на два непересекающихся множества, каждое из которых покрывает весь прямоугольник.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка