Олимпиадные задачи из источника «глава 9. Геометрические неравенства» - сложность 2 с решениями

Дан выпуклый четырёхугольник и точка <i>M</i> внутри него. Доказать, что сумма расстояний от точки <i>M</i> до вершин четырёхугольника меньше суммы попарных расстояний между вершинами четырёхугольника.

Квадрат разрезан на прямоугольники.

Доказать, что сумма площадей кругов, описанных около каждого прямоугольника, не меньше площади круга, описанного около квадрата.

Дан$\Delta$<i>ABC</i>и точка<i>D</i>внутри него, причем<i>AC</i>-<i>DA</i>> 1 и<i>BC</i>-<i>BD</i>> 1. Берётся произвольная точка<i>E</i>внутри отрезка<i>AB</i>. Доказать, что<i>EC</i>-<i>ED</i>> 1.

Докажите, что замкнутую ломаную длины 1 можно поместить в круг радиуса 0, 25.

а) Докажите, что если длины проекций отрезка на две взаимно перпендикулярные прямые равны <i>a</i>и <i>b</i>, то его длина не меньше (<i>a</i>+<i>b</i>)/$\sqrt{2}$. б) Длины проекций многоугольника на координатные оси равны <i>a</i>и <i>b</i>. Докажите, что его периметр не меньше $\sqrt{2}$(<i>a</i>+<i>b</i>).

Угол <i>A</i>четырехугольника <i>ABCD</i>тупой; <i>F</i> — середина стороны <i>BC</i>. Докажите, что 2<i>FA</i><<i>BD</i>+<i>CD</i>.

Выпуклый многоугольник, площадь которого больше 0, 5, помещен в квадрат со стороной 1. Докажите, что внутри многоугольника можно поместить отрезок длины 0, 5, параллельный стороне квадрата.

Площади треугольников <i>ABC</i>и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>равны <i>S</i>и <i>S</i><sub>1</sub>, причем треугольник <i>ABC</i>не тупоугольный. Наибольшее из отношений <i>a</i><sub>1</sub>/<i>a</i>,<i>b</i><sub>1</sub>/<i>b</i>и <i>c</i><sub>1</sub>/<i>c</i>равно <i>k</i>. Докажите, что <i>S</i><sub>1</sub>$\leq$<i>k</i><sup>2</sup><i>S</i>.

Через точку, лежащую внутри треугольника, проведены три прямые, параллельные его сторонам. Обозначим площади частей, на которые эти прямые разбивают треугольник, так, как показано на рис. Докажите, что <i>a</i>/$\alpha$+<i>b</i>/$\beta$+<i>c</i>/$\gamma$$\geq$3/2.

<div align="center"><img src="/storage/problem-media/57344/problem_57344_img_6.gif" border="1"></div>

<i>ABCD</i> — выпуклый четырехугольник площади <i>S</i>. Угол между прямыми <i>AB</i>и <i>CD</i>равен <i>a</i>, угол между <i>AD</i>и <i>BC</i>равен $\beta$. Докажите, что<div align="CENTER"> <i>AB</i><sup> . </sup><i>CD</i> sin$\displaystyle \alpha$ + <i>AD</i><sup> . </sup><i>BC</i> sin$\displaystyle \beta$ $\displaystyle \leq$ 2<i>S</i> $\displaystyle \leq$ <i>AB</i><sup> . </sup><i>CD</i> + <i>AD</i><sup> . </sup><i>BC</i>. </div>

Площади треугольников<i>ABC</i>,<i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>,<i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub>равны <i>S</i>,<i>S</i><sub>1</sub>,<i>S</i><sub>2</sub>соответственно, причем <i>AB</i>=<i>A</i><sub>1</sub><i>B</i><sub>1</sub>+<i>A</i><sub>2</sub><i>B</i><sub>2</sub>,<i>AC</i>=<i>A</i><sub>1</sub><i>C</i><sub>1</sub>+<i>A</i><sub>2</sub&...

Точки <i>M</i>и <i>N</i>лежат на сторонах <i>AB</i>и <i>AC</i>треугольника <i>ABC</i>, причем <i>AM</i>=<i>CN</i>и <i>AN</i>=<i>BM</i>. Докажите, что площадь четырехугольника <i>BMNC</i>по крайней мере в три раза больше площади треугольника <i>AMN</i>.

Периметр выпуклого четырехугольника равен 4. Докажите, что его площадь не превосходит 1.

Пусть <i>E</i>,<i>F</i>,<i>G</i>и <i>H</i> — середины сторон <i>AB</i>,<i>BC</i>,<i>CD</i>и <i>DA</i>четырехугольника <i>ABCD</i>. Докажите, что<i>S</i><sub>ABCD</sub>$\leq$<i>EG</i><sup> . </sup><i>HF</i>$\le$(<i>AB</i>+<i>CD</i>)(<i>AD</i>+<i>BC</i>)/4.

Две высоты треугольника равны 12 и 20. Докажите, что третья высота меньше 30.

Докажите, что если длины сторон треугольника связаны неравенством <i>a</i><sup>2</sup>+<i>b</i><sup>2</sup>> 5<i>c</i><sup>2</sup>, то <i>c</i> — длина наименьшей стороны.

Пусть <i>ABCD</i> — выпуклый четырехугольник, причем <i>AB</i>+<i>BD</i>$\leq$<i>AC</i>+<i>CD</i>. Докажите, что <i>AB</i><<i>AC</i>.

<i>a</i>,<i>b</i>и<i>c</i>- длины сторон произвольного треугольника. Докажите, что<div align="CENTER"> $\displaystyle {\frac{a}{b+c-a}}$ + $\displaystyle {\frac{b}{c+a-b}}$ + $\displaystyle {\frac{c}{a+b-c}}$$\displaystyle \ge$3. </div>

<i>a</i>,<i>b</i>и<i>c</i>- длины сторон произвольного треугольника. Докажите, что<div align="CENTER"> <i>a</i>(<i>b</i> - <i>c</i>)<sup>2</sup> + <i>b</i>(<i>c</i> - <i>a</i>)<sup>2</sup> + <i>c</i>(<i>a</i> - <i>b</i>)<sup>2</sup> + 4<i>abc</i> > <i>a</i><sup>3</sup> + <i>b</i><sup>3</sup> + <i>c</i><sup>3</sup>. </div>

При любом натуральном <i>n</i>из чисел <i>a</i><sup>n</sup>,<i>b</i><sup>n</sup>и <i>c</i><sup>n</sup>можно составить треугольник. Докажите, что среди чисел <i>a</i>,<i>b</i>и <i>c</i>есть два равных.

Даны <i>n</i>точек <i>A</i><sub>1</sub>,...,<i>A</i><sub>n</sub>и окружность радиуса 1. Докажите, что на окружности можно выбрать точку <i>M</i>так, что <i>MA</i><sub>1</sub>+ ... +<i>MA</i><sub>n</sub>$\geq$<i>n</i>.

Докажите, что в любом треугольнике сумма медиан больше 3/4 периметра, но меньше периметра.

Пусть <i>ABCD</i> – выпуклый четырехугольник. Докажите, что  <i>AB</i> + <i>CD</i> < <i>AC</i> + <i>BD</i>.

Докажите, что любая диагональ четырёхугольника меньше половины его периметра.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка