Задача
Докажите, что если длины сторон треугольника связаны неравенством a2+b2> 5c2, то c — длина наименьшей стороны.
Решение
Предположим, что c — не наименьшая сторона, например, a$\leq$c. Тогда a2$\leq$c2и b2< (a+c)2$\leq$4c2. Поэтому a2+b2< 5c2. Получено противоречие.
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь
Комментариев нет