Назад
Задача

Квадрат разрезан на прямоугольники.

Доказать, что сумма площадей кругов, описанных около каждого прямоугольника, не меньше площади круга, описанного около квадрата.

Решение

Пусть s, s1, ..., sn – площади квадрата и составляющих его прямоугольников, S, S1, ..., Sn – площади описанных около них кругов. Если стороны k-го прямоугольника равны a и b, то  Sk = ¼ π(a² + b²). Поэтому  πsk = πab ≤ ½ π(a² + b²) = 2Sk.  Следовательно,  2S = πs = π(s1 + ... + sn) ≤ 2(S1 + ... + Sn).

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет