Олимпиадные задачи из источника «Прасолов В.В., Задачи по планиметрии» для 5-7 класса - сложность 2-3 с решениями

Прасолов В.В., Задачи по планиметрии

Назад

Доказать, что в произвольном выпуклом 2<i>n</i>-угольнике найдётся диагональ, не параллельная ни одной из его сторон.

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик <i>A</i> прыгает через кузнечика <i>B</i>, то после прыжка он оказывается от <i>B</i> на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?

Можно ли нарисовать на плоскости шесть точек и так соединить их непересекающимися отрезками, что каждая точка будет соединена ровно с четырьмя другими?

Постройте замкнутую шестизвенную ломаную, пересекающую каждое свое звено ровно один раз.

Существует ли треугольник, который можно разрезать: а) на 3 равных треугольника, подобных исходному?; б) на 5 треугольников, подобных исходному (не обязательно равных)?

Разрежьте фигуру, изображенную на рис. на 4 равные части. <div align="center"><img src="/storage/problem-media/58228/problem_58228_img_2.gif" border="1"></div>

Несколько кругов одного радиуса положили на стол так, что никакие два не перекрываются. Докажите, что круги можно раскрасить в четыре цвета так, что любые два касающихся круга будут разного цвета.

Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток.

Вершины правильного 2<i>n</i>-угольника <i>A</i><sub>1</sub>...<i>A</i><sub>2<i>n</i></sub> разбиты на <i>n</i> пар.

Докажите, что если  <i>n</i> = 4<i>m</i> + 2  или  <i>n</i> = 4<i>m</i> + 3,  то две пары вершин являются концами равных отрезков.

На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев ломаной <i>особой</i>, если продолжение одного из них пересекает другое. Докажите, что число особых пар чётно.

Окружность разбита точками на 3<i>k</i> дуг: по <i>k</i> дуг длины 1, 2 и 3. Докажите, что найдутся две диаметрально противоположные точки деления.

На плоскости лежат три шайбы <i>A, B</i> и <i>C</i>. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов?

На плоскости дана замкнутая ломаная с конечным числом звеньев. Прямая <i>l</i> пересекает её ровно в 1985 точках.

Докажите, что существует прямая, пересекающая эту ломаную более чем в 1985 точках.

Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:

  а) (2<i>n</i>+1)-угольника;  б) 2<i>n</i>-угольника?

а) Нарисуйте многоугольник и точку <i>O</i>внутри его так, чтобы ни одна сторона не была видна из нее полностью. б) Нарисуйте многоугольник и точку <i>O</i>вне его так, чтобы ни одна сторона не была видна из нее полностью.

Какое наименьшее число точек достаточно отметить внутри выпуклого<i>n</i>-угольника, чтобы внутри любого треугольника с вершинами в вершинах<i>n</i>-угольника содержалась хотя бы одна отмеченная точка?

На плоскости дано 25 точек, причем среди любых трех из них найдутся две на расстоянии меньше 1. Докажите, что существует круг радиуса 1, содержащий не меньше 13 из этих точек.

На шахматной доске 8×8 отмечены центры всех полей. Можно ли тринадцатью прямыми, не проходящими через эти центры, разбить доску на части так, чтобы внутри каждой из них лежало не более одной отмеченной точки?

В прямоугольнике 3×4 расположено 6 точек. Докажите, что среди них найдутся две точки, расстояние между которыми не превосходит $\sqrt{5}$.

Внутри равностороннего треугольника со стороной 1 расположено пять точек. Докажите, что расстояние между некоторыми двумя из них меньше 0, 5.

Узлы бесконечной клетчатой бумаги раскрашены в два цвета. Докажите, что существуют две горизонтальные и две вертикальные прямые, на пересечении которых лежат точки одного цвета.

Двое игроков поочередно выкладывают на прямоугольный стол пятаки. Монету разрешается класть только на свободное место. Проигрывает тот, кто не может сделать очередной ход. Докажите, что первый игрок всегда может выиграть.

Точки <i>P</i> и <i>Q</i> движутся с одинаковой постоянной скоростью <i>v</i> по двум прямым, пересекающимся в точке <i>O</i>.

Докажите, что на плоскости существует неподвижная точка <i>A</i>, расстояния от которой до точек <i>P</i> и <i>Q</i> в любой момент времени равны.

На сторонах  <i>AB, BC, CA</i> правильного треугольника <i>ABC</i> взяты точки <i>P, Q, R</i> так, что  <i>AP</i> : <i>PB = BQ</i> : <i>QC = CR</i> : <i>RA</i> = 2 : 1.

Докажите, что стороны треугольника <i>PQR</i> перпендикулярны сторонам треугольника <i>ABC</i>.

Общая внутренняя касательная к окружностям с радиусами <i>R</i>и <i>r</i>пересекает их общие внешние касательные в точках <i>A</i>и <i>B</i>и касается одной из окружностей в точке <i>C</i>. Докажите, что <i>AC</i><sup> . </sup><i>CB</i>=<i>Rr</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка