Олимпиадные задачи из источника «Турнир им.Ломоносова» для 10 класса - сложность 2 с решениями

Верно ли, что в вершинах любого треугольника можно расставить положительные числа так, чтобы сумма чисел в концах каждой стороны треугольника равнялась длине этой стороны?

В каждой клетке клетчатого квадрата 7×7 стоит по числу. Сумма чисел в каждом квадратике 2×2 и 3×3 равна 0.

Докажите, что сумма чисел в 24 клетках, расположенных по периметру квадрата, тоже равна 0.

Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:<div align="center"><img src="/storage/problem-media/116812/problem_116812_img_2.gif"></div> Могло ли такое быть?

Прямоугольник площади 14 делит сторону квадрата в отношении 1 к 3 (см. рис). Найдите площадь квадрата. <div align="center"><img src="/storage/problem-media/116372/problem_116372_img_2.gif"></div>

Бабе-Яге подарили большие песочные часы на 5 минут и маленькие – на 2 минуты. Зелье должно непрерывно кипеть ровно 8 минут. Когда оно закипело, весь песок в больших часах находился в нижней половине, а в маленьких – какая-то (неизвестная) часть песка в верхней, а остальная часть – в нижней половине. Помогите Бабе-Яге отмерить ровно 8 минут.

(Песок все время сыплется с постоянной скоростью. На переворачивание время не тратится.)

Внутри забора, представляющего собой замкнутую несамопересекающуюся ломаную, заперт тигр. На рисунке видна только часть забора (положение тигра показано крестиком). Нарисуйте, как мог бы выглядеть весь забор (забор может идти только по линиям сетки).<div align="center"><img src="/storage/problem-media/116368/problem_116368_img_2.gif"></div>

Существуют ли такие натуральные <i>x</i> и <i>y</i>, что  <i>x</i><sup>4</sup> – <i>y</i><sup>4</sup> = <i>x</i>³ + <i>y</i>³?

В саду растут яблони и груши — всего 7 деревьев (деревья обоих видов присутствуют). Ближе всех к каждому дереву растет дерево того же вида и дальше всех от каждого дерева растет дерево того же вида. Приведите пример того, как могут располагаться деревья в саду. Комментарий. Имелось в виду, что если ближайших к данному дереву (или самых дальних от данного дерева) несколько, то условие должно выполнятся для<b>каждого</b>из них.

На левую чашу весов положили два шара радиусов 3 и 5, а на правую — один шар радиуса 8. Какая из чаш перевесит? (Все шары изготовлены целиком из одного и того же материала.)

Египтяне вычисляли площадь выпуклого четырёхугольника по формуле(<i>a+c</i>)(<i>b+d</i>)<i>/</i>4, где<i> a </i>,<i> b </i>,<i> c </i>,<i> d </i> — длины сторон в порядке обхода. Найдите все четырёхугольники, для которых эта формула верна.

Существуют ли такие три числа, что если их поставить в одном порядке в качестве коэффициентов квадратного трёхчлена, то он имеет два положительных корня, а если в другом – два отрицательных?

В магазине продают DVD-диски – по одному и упаковками двух видов (упаковки разных видов различаются по количеству и стоимости). Вася подсчитал, сколько требуется денег, чтобы купить <i>N</i> дисков (если выгоднее всего купить больше дисков, чем нужно – Вася так и делает): <div align="center"><img src="/storage/problem-media/111639/problem_111639_img_2.gif"></div>Сколько дисков было в упаковках и по какой цене упаковки продавались? Какое количество денег необходимо Васе, чтобы купить не менее 29 дисков?

Есть длинный ряд луночек. В трёх из них лежит по шарику. Игроки по очереди делают ход: берут один из крайних шариков и перекладывают в свободную луночку между двумя другими. Тот, кто не может сделать ход, считается проигравшим. Кто – начинающий игру или ходящий вторым – победит при правильной игре при показанных на рисунках первоначальных расположениях шариков?

  а)   <img align="absmiddle" src="/storage/problem-media/110925/problem_110925_img_2.gif">

  б)   <img align="absmiddle" src="/storage/problem-media/110925/problem_110925_img_3.gif">

  в)   <img align="absmiddle" src="/storage/problem-media/110925/problem_110925_img_4.gif">

  г) Разберите общий случай: между крайними шариками и средним имее...

Существует ли тетраэдр, все грани которого — равнобедренные треугольники, причём никакие два из них не равны?

Разделим каждое четырёхзначное число на сумму его цифр. Какой самый большой результат может получиться?

Даны прямая и точка вне неё. Как с помощью циркуля и линейки построить прямую, параллельную данной прямой и проходящую через данную точку, проведя при этом возможно меньшее число линий (окружностей и прямых), так что последняя проведённая линия — это искомая прямая? Какого числа линий Вам удалось добиться?

Все коэффициенты многочлена <i>P</i>(<i>x</i>) – целые числа. Известно, что  <i>P</i>(1) = 1  и что  <i>P</i>(<i>n</i>) = 0  при некотором натуральном <i>n</i>. Найдите <i>n</i>.

Основание пирамиды Хеопса — квадрат, а её боковые грани — равные равнобедренные треугольники. Буратино лазил наверх и измерил угол грани при вершине. Получилось 100<sup>o</sup>. Может ли так быть?

Поверхность кубика Рубика 3 x 3 x 3 состоит из 54 клеток. Какое наибольшее количество клеток можно отметить так, чтобы отмеченные клетки не имели общих вершин?

Таблица имеет форму квадрата со стороной длины <i>n</i>. В первой строчке таблицы стоит одно число – 1. Во второй – два числа – две двойки, в третьей – три четвёрки, и т.д.: <div align="center"><img src="/storage/problem-media/107677/problem_107677_img_2.gif"></div>(здесь нарисован квадрат 4×4). В каждой следующей строчке стоит следующая степень двойки. Длина строчек сначала растёт, а затем убывает так, чтобы получился квадрат. Докажите, что сумма всех чисел таблицы есть квадрат некоторого целого числа.

Треугольник<i>ABC</i>вписан в окружность. Точка<i>D</i>— середина дуги<i>AC</i>, точки<i>K</i>и<i>L</i>выбраны на сторонах<i>AB</i>и<i>CB</i>соответственно так, что<i>KL</i>параллельна<i>AC</i>. Пусть<i>K</i>' и<i>L</i>' — точки пересечения прямых<i>DK</i>и<i>DL</i>соответственно с окружностью. Докажите, что вокруг четырехугольника<i>KLL</i>'<i>K</i>' можно описать окружность.

Шестью одинаковыми параллелограммами площади 1 оклеили кубик с ребром 1. Можно ли утверждать, что все параллелограммы — квадраты? Можно ли утверждать, что все они — прямоугольники?

Куб со стороной 10 разбит на 1000 кубиков с ребром 1. В каждом кубике записано число, при этом сумма чисел в каждом столбике из 10 кубиков (в любом из трёх направлений) равна 0. В одном из кубиков (обозначим его через <i>A</i>) записана единица. Через кубик <i>A</i> проходит три <i>слоя</i>, параллельных граням куба (толщина каждого слоя равна 1). Найдите сумму всех чисел в кубиках, не лежащих в этих слоях.

Число <sup>1</sup>/<sub>42</sub> разложили в бесконечную десятичную дробь. Затем вычеркнули 1997-ю цифру после запятой, а все цифры, стоящие справа от вычеркнутой цифры, сдвинули на 1 влево. Какое число больше: новое или первоначальное?

По кругу записаны семь натуральных чисел. Известно, что в каждой паре соседних чисел одно делится на другое.

Докажите, что найдётся пара и не соседних чисел с таким же свойством.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка