Назад

Олимпиадная задача по теории чисел и графов для 7–10 классов от Шаповалова А. В.

Задача

По кругу записаны семь натуральных чисел. Известно, что в каждой паре соседних чисел одно делится на другое.

Докажите, что найдётся пара и не соседних чисел с таким же свойством.

Решение

Соединим пары соседних чисел так, чтобы стрелка шла от кратного (так называется число, которое делится на делитель) к делителю (если соседние числа равны, то направление стрелки выбираем произвольно). Общее количество стрелок нечётно (7), поэтому их направления не могут чередоваться. Следовательно, какие-то две соседние стрелки направлены в одну сторону:  xyz.  Это означает, что x делится на y, а y делится на z. Отсюда следует, что x делится на z.

Ответ

Ответ задачи отсутствует

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет