Олимпиадные задачи из источника «13 (1990)»
13 (1990)
НазадВершины правильного треугольника расположены на сторонах <i>AB</i>, <i>CD</i> и <i>EF</i> правильного шестиугольника <i>ABCDEF</i>.
Докажите, что эти треугольник и шестиугольник имеют общий центр.
В булке за 10 копеек оказался запечен изюм двух сортов. Докажите, что внутри булки найдутся две такие точки, удаленные на расстояние 1 см, что они либо не принадлежат никаким из изюмин, либо принадлежат изюминам одного сорта.
Произведение двух положительных чисел больше их суммы. Докажите, что эта сумма больше 4.
Дан куб 4×4×4. Расставьте в нем 16 ладей так, чтобы они не били друг друга.
В таблице 10×10 по порядку расставлены числа от 0 до 99 (в первой строке – от 0 до 9, во второй – от 10 до 19 и т.д.). Затем перед каждым из чисел поставлен знак "+" или "–" так, что в каждой строке и каждом столбце оказалось по пять знаков "+" и пять знаков "–". Чему может быть равна сумма всех чисел таблицы с учетом расставленных знаков?
Можно ли на плоскости нарисовать 12 окружностей так, чтобы каждая касалась ровно пяти других?
Из квадратного листа бумаги в клетку, содержащего целое число клеток, вырезали квадрат, содержащий целое число клеток так, что осталось 124 клетки. Сколько клеток мог содержать первоначальный лист бумаги?
На некотором острове 15 государств. У каждого из них хотя бы одно соседнее государство дружественное. Докажите, что найдётся государство, у которого чётное число дружественных соседей. (Два государства называются соседними, если у них имеетсяцелый кусок общей границы.)