Олимпиадные задачи из источника «30 (2007), математические игры»
30 (2007), математические игры
НазадПаук в лесу сплёл паутину. Длинные нити привязал к веткам. И в эту паутину залетела бабочка. За один ход бабочка или паук могут передвинуться по отрезку нити в соседнюю точку пересечения нитей; бабочка также может выбраться на конец нити (<i>ветку</i>), если перед этим находилась в соседней точке пересечения. Они ходят по очереди, начинает бабочка. Если бабочка смогла добраться до веток, она спаслась (это её победа). Если паук добрался до бабочки, он её съедает (и это его победа). Возможен и такой исход, когда никто не побеждает, а игра длится бесконечно. <div align="center"><img src="/storage/problem-media/110927/problem_110927_img_2.gif"></div> а) Чем закончится игра в ситуации, изображённой на рисунке? (У паутины четыре кольца и семь...
На листке бумаги написаны натуральные числа от 1 до <i>N</i>. Игроки по очереди обводят в кружок одно число, соблюдая условие: любые два уже обведённых числа должны быть взаимно простыми. Два раза число обводить нельзя. Проигрывает тот, у кого нет хода.
а) Кто – начинающий игру или ходящий вторым – победит при <i>N</i> = 10?
б) А при <i>N</i> = 12?
в) А при <i>N</i> = 15?
г) А при <i>N</i> = 30?
Есть длинный ряд луночек. В трёх из них лежит по шарику. Игроки по очереди делают ход: берут один из крайних шариков и перекладывают в свободную луночку между двумя другими. Тот, кто не может сделать ход, считается проигравшим. Кто – начинающий игру или ходящий вторым – победит при правильной игре при показанных на рисунках первоначальных расположениях шариков?
а) <img align="absmiddle" src="/storage/problem-media/110925/problem_110925_img_2.gif">
б) <img align="absmiddle" src="/storage/problem-media/110925/problem_110925_img_3.gif">
в) <img align="absmiddle" src="/storage/problem-media/110925/problem_110925_img_4.gif">
г) Разберите общий случай: между крайними шариками и средним имее...