Олимпиадные задачи из источника «Московская устная олимпиада по геометрии» для 9 класса

Восстановите треугольник с помощью циркуля и линейки по точке пересечения высот и основаниям медианы и биссектрисы, проведённых к одной из сторон.

Дана окружность и хорда <i>AB</i>, отличная от диаметра. По большей дуге <i>AB</i> движется точка <i>C</i>. Окружность, проходящая через точки <i>A</i>, <i>C</i> и точку <i>H</i> пересечения высот треугольника <i>ABC</i>, повторно пересекает прямую <i>BC</i> в точке <i>P</i>. Докажите, что прямая <i>PH</i> проходит через фиксированную точку, не зависящую от положения точки <i>C</i>.

В треугольнике <i>ABC</i> точка <i>I</i> – центр вписанной окружности, точки <i>I<sub>A</sub></i>, <i>I<sub>C</sub></i> – центры вневписанных окружностей, касающихся сторон <i>BC</i> и <i>AB</i> соответственно. Точка <i>O</i> – центр описанной окружности треугольника <i>II<sub>A</sub>I<sub>C</sub></i>. Докажите, что  <i>OI</i> ⊥ <i>AC</i>.

Дан равносторонний треугольник <i>ABC</i> и прямая <i>l</i>, проходящая через его центр. Точки пересечения этой прямой со сторонами <i>AB</i> и <i>BC</i> отразили относительно середин этих сторон соответственно. Докажите, что прямая, проходящая через получившиеся точки, касается вписанной окружности треугольника <i>ABC</i>.

На плоскости даны два равных многоугольника <i>F</i> и <i>F'</i>. Известно, что все вершины многоугольника <i>F</i> принадлежат <i>F'</i> (могут лежать внутри него или на границе). Верно ли, что все вершины этих многоугольников совпадают?

В трапеции <i>ABCD</i> стороны <i>AD</i> и <i>BC</i> параллельны, и  <i>AB = BC = BD</i>.  Высота <i>BK</i> пересекает диагональ <i>AC</i> в точке <i>M</i>. Найдите ∠<i>CDM</i>.

B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник.

Hа сторонах треугольника <i>ABC</i> во внешнюю сторону построены правильные треугольники <i>ABC</i><sub>1</sub>, <i>BCA</i><sub>1</sub>, <i>CAB</i><sub>1</sub>. Hа отрезке <i>A</i><sub>1</sub><i>B</i><sub>1</sub> во внешнюю сторону треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> построен правильный треугольник <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>2</sub>. Докажите, что <i>C</i> – середина отрезка <i>C</i><sub>1</sub><i>C</i><...

Дан произвольный треугольник <i>ABC</i>. Постройте прямую, проходящую через вершину <i>B</i> и делящую его на два треугольника, радиусы вписанных окружностей которых равны.

Hа сторонах <i>AB</i>, <i>BC</i> и <i>AC</i> треугольника <i>ABC</i> выбраны точки <i>C</i>', <i>A</i>' и <i>B</i>' соответственно так, что угол <i>A</i>'<i>C</i>'<i>B</i>' — прямой. Докажите, что отрезок <i>A</i>'<i>B</i>' длиннее диаметра вписанной окружности треугольника <i>ABC</i>.

Oпределите отношение сторон прямоугольника, описанного около уголка из пяти клеток.

Диагонали вписанного четырехугольника <i>ABCD</i> пересекаются в точке <i>K</i>.

Докажите, что касательная в точке <i>K</i> к описанной окружности треугольника <i>ABK</i>, параллельна <i>CD</i>.

Пусть <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> – середины сторон треугольника <i>ABC, I</i> – центр вписанной в него окружности, <i>C</i><sub>2</sub> – точка пересечения прямых <i>C</i><sub>1</sub><i>I</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub>, <i>C</i><sub>3</sub> – точка пересечения прямых <i>CC</i><sub>2</sub> и <i>AB</i>. Докажите, что прямая <i>IC</i><sub>3</sub> перпендикулярна прямой <i>AB</i>.

В окружность вписан треугольник <i>ABC</i>. Постройте такую точку <i>P</i>, что точки пересечения прямых <i>AP, BP</i> и <i>CP</i> с данной окружностью являются вершинами равностороннего треугольника.

Дан шестиугольник <i>ABCDEF</i>, в котором <i>AB</i> = <i>BC</i>, <i>CD</i> = <i>DE</i>, <i>EF</i> = <i>FA</i>, а углы <i>A</i> и <i>C</i> — прямые. Докажите, что прямые <i>FD</i> и <i>BE</i> перпендикулярны.

В треугольнике <i>ABC</i> на стороне <i>AB</i> выбраны точки <i>K</i> и <i>L</i> так, что <i>AK</i> = <i>BL</i>, а на стороне <i>BC</i> — точки <i>M</i> и <i>N</i> так, что <i>CN</i> = <i>BM</i>. Докажите, что <i>KN</i> + <i>LM</i> ≥ <i>AC</i>.

Дан параллелограмм <i>ABCD</i>. Прямая, параллельная <i>AB</i>, пересекает биссектрисы углов <i>A</i> и <i>C</i> в точках <i>P</i> и <i>Q</i> соответственно.

Докажите, что углы <i>ADP</i> и <i>ABQ</i> равны.

В шестиугольнике пять углов по 90°, а один угол — 270° (см. рисунок). C помощью линейки без делений разделите его на два равновеликих многоугольника.<div align="center"><img src="/storage/problem-media/116184/problem_116184_img_2.gif"></div>

На плоскости расположен круг. Какое наименьшее количество прямых надо провести, чтобы, симметрично отражая данный круг относительно этих прямых (в любом порядке конечное количество раз), можно было накрыть им любую заданную точку плоскости?

Дан треугольник <i>АВС.</i> Точка <i>О</i><sub>1</sub> – центр прямоугольника <i>ВСDE</i>, построенного так, что сторона <i>DE</i> прямоугольника содержит вершину <i>А</i> треугольника. Точки <i>О</i><sub>2</sub> и <i>О</i><sub>3</sub> являются центрами прямоугольников, построенных аналогичным образом на сторонах <i>АС</i> и <i>АВ</i> соответственно. Докажите, что прямые <i>АО</i><sub>1</sub>, <i>ВО</i><sub>2</sub> и <i>СО</i><sub>3</sub> пересекаются в одной точке.

В треугольнике <i>ABC</i> <i>M</i> – точка пересечения медиан, <i>O</i> – центр вписанной окружности, <i>A'</i>, <i>B'</i>, <i>C'</i> – точки ее касания со сторонами <i>BC</i>, <i>CA</i>, <i>AB</i> соответственно. Докажите, что, если <i>CA' </i>= <i>AB</i>, то прямые <i>OM</i> и <i>AB</i> перпендикулярны.

Внутри отрезка <i>АС</i> выбрана произвольная точка <i>В</i> и построены окружности с диаметрами <i>АВ</i> и <i>ВС</i>. На окружностях (в одной полуплоскости относительно <i>АС</i>) выбраны соответственно точки <i>M</i> и <i>L</i> так, что  ∠<i>MBA</i> = ∠<i>LBC</i>.  Точки <i>K</i> и <i>F</i> отмечены соответственно на лучах <i>ВМ</i> и <i>BL</i> так, что

<i>BK = BC</i>  и  <i>BF = AB</i>. Докажите, что точки <i>M, K, F</i> и <i>L</i> лежат на одной окружности.

В выпуклом четырёхугольнике <i>ABCD</i>  ∠<i>ABC</i> = 90°,  ∠<i>BAC</i> = ∠<i>CAD,  AC = AD,  DH</i> – высота треугольника <i>ACD</i>.

В каком отношении прямая <i>BH</i> делит отрезок <i>CD</i>?

Постройте треугольник по стороне, противолежащему углу и медиане, проведенной к другой стороне (<i>исследование вопроса о количестве решений не требуется</i>).

Дана окружность и точка <i>P</i> внутри неё. Два произвольных перпендикулярных луча с началом в точке <i>P</i> пересекают окружность в точках <i>A</i> и <i>B</i>. Tочка <i>X</i> является проекцией точки <i>P</i> на прямую <i>AB</i>, <i>Y</i> – точка пересечения касательных к окружности, проведённых через точки <i>A</i> и <i>B</i>. Докажите, что все прямые <i>XY</i> проходят через одну и ту же точку.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка