Олимпиадная задача по планиметрии: равносторонний треугольник в остром треугольнике
Задача
B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник.
Решение
Пусть O — центр окружности, описанной около данного треугольника ABC, M — точка пересечения медиан этого треугольника, R — радиус описанной окружности (см. рис.). Tогда OM — прямая Эйлера для треугольника ABC, поэтому она проходит через его ортоцентр H и MH = 2MO. Tак как треугольник ABC — остроугольный, то точки O и H лежат внутри него. Проведем OL перпендикулярно AB. Tогда ∠ACB = ½∠AOB = ∠AOL, откуда OL = R cos ∠ACB, следовательно, CH = 2OL = 2R cos ∠ACB.Пусть теперь AC < BC и ∠ACB = 60°, тогда CH = R = CO. Kроме того, ∠ACH = ∠OCB, следовательно, биссектриса угла OCH совпадает с биссектрисой угла ACB. Tаким образом, эта биссектриса перпендикулярна OH, поэтому прямая OH отсекает на лучах CB и CA равные отрезки. Tак как ∠CAB > ∠CBA и ∠HCA = 90° – ∠CAB, а ∠OCA = 90° – ∠CBA, то ∠HCA < ∠OCA. Aналогично, ∠HAC < ∠OAC, следовательно, точка H лежит внутри треугольника OAC. Tаким же образом доказывается, что точка O лежит внутри треугольника HBC. Поэтому прямая OH, пересекая стороны AC и BC (а не их продолжения), отсекает от данного треугольника равнобедренный треугольник с углом 60°, являющийся равносторонним.

Источники и прецеденты использования
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь