Олимпиадные задачи из источника «09 (2011 год)»

Пусть <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub> – высоты неравнобедренного остроугольного треугольника <i>ABC</i>; описанные окружности треугольников <i>ABC</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i>, вторично пересекаются в точке <i>P</i>, <i>Z</i> – точка пересечения касательных к описанной окружности треугольника <i>ABC</i>, проведённых в точках <i>A</i> и <i>B</i>. Докажите, что прямые <i>AP</i>, <i>BC</i> и <i>ZC</i><sub>1</sub> пересекаются в одной точке.

B выпуклом четырёхугольнике <i>ABCD</i>:  <i>AC</i> ⊥ <i>BD</i>,  ∠<i>BCA</i> = 10°,  ∠<i>BDA</i> = 20°,  ∠<i>BAC</i> = 40°.  Найдите ∠<i>BDC</i>.

Докажите, что любой жесткий плоский треугольник <i>T</i> площади меньше 4 можно просунуть сквозь треугольную дырку <i>Q</i> площади 3.

Дана неравнобокая трапеция <i>ABCD</i>  (<i>AB || CD</i>).  Окружность, проходящая через точки <i>A</i> и <i>B</i>, пересекает боковые стороны трапеции в точках <i>P</i> и <i>Q</i>, а диагонали – в точках <i>M</i> и <i>N</i>. Докажите, что прямые <i>PQ, MN</i> и <i>CD</i> пересекаются в одной точке.

Прямая <i>a</i> пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от <i>a</i> и не пересекающих <i>a</i>.

Bерно ли, что <i>a</i> перпендикулярна α?

<i>AD</i> и <i>BE</i> — высоты треугольника <i>ABC</i>. Оказалось, что точка <i>C'</i>, симметричная вершине <i>C</i> относительно середины отрезка <i>DE</i>, лежит на стороне <i>AB</i>. Докажите, что <i>AB</i> – касательная к окружности, описанной около треугольника <i>DEC'</i>.

Один треугольник лежит внутри другого.

Докажите, что хотя бы одна из двух наименьших сторон (из шести) является стороной внутреннего треугольника.

Пусть <i>AA</i><sub>1</sub> и <i>BB</i><sub>1</sub> – высоты неравнобедренного остроугольного треугольника <i>AB, M</i> – середина <i>AB</i>. Описанные окружности треугольников <i>AMA</i><sub>1</sub> и <i>BMB</i><sub>1</sub>, пересекают прямые <i>AC</i> и <i>BC</i> в точках <i>K</i> и <i>L</i> соответственно. Докажите, что <i>K, M</i> и <i>L</i> лежат на одной прямой.

B трапеции <i>ABCD</i>  <i>AB</i> = <i>BC</i> = <i>CD</i>,  <i>CH</i> – высота. Докажите, что перпендикуляр, опущенный из <i>H</i> на <i>AC</i>, проходит через середину <i>BD</i>.

Из листа бумаги в клетку вырезали квадрат 2×2.

Используя только линейку без делений и не выходя за пределы квадрата, разделите диагональ квадрата на 6 равных частей.

B равнобедренном треугольнике <i>ABС</i> на боковой стороне <i>BС</i> отмечена точка <i>M</i> так, что отрезок <i>MС</i> равен высоте треугольника, проведённой к этой стороне, а на боковой стороне <i>AB</i> отмечена точка <i>K</i> так, что угол <i>KMС</i> – прямой. Hайдите угол <i>ACK</i>.

Биссектриса угла <i>B</i> и биссектриса внешнего угла <i>D</i> прямоугольника <i>ABCD</i> пересекают сторону <i>AD</i> и прямую <i>AB</i> в точках <i>M</i> и <i>K</i> соответственно.

Докажите, что отрезок <i>MK</i> равен и перпендикулярен диагонали прямоугольника.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка