Олимпиадные задачи по математике

Oпределите отношение сторон прямоугольника, описанного около уголка из пяти клеток.

Миша решил уравнение  <i>x</i>² + <i>ax + b</i> = 0  и сообщил Диме набор из четырёх чисел – два корня и два коэффициента этого уравнения (но не сказал, какие именно из них корни, а какие – коэффициенты). Сможет ли Дима узнать, какое уравнение решал Миша, если все числа набора оказались различными?

Многогранник описан около сферы. Назовем его грань большой, если проекция сферы на плоскость грани целиком попадает в грань. Докажите, что больших граней не больше 6.

Внутри параболы  <i>y = x</i>²  расположены несовпадающие окружности ω<sub>1</sub>, ω<sub>2</sub>, ω<sub>3</sub>, ... так, что при каждом <i>n</i> > 1 окружность ω<sub><i>n</i></sub> касается ветвей параболы и внешним образом окружности ω<sub><i>n</i>–1</sub> (см. рис.). Найдите радиус окружности σ<sub>1998</sub>, если известно, что диаметр ω<sub>1</sub> равен 1 и она касается параболы в её вершине. <div align="center"><img src="/storage/problem-media/109664/problem_109664_img_2.gif"></div>

Рассматриваются всевозможные квадратные трёхчлены вида  <i>x</i>² + <i>px + q</i>,  где <i>p, q</i> – целые,  1 ≤ <i>p</i> ≤ 1997,  1 ≤ <i>q</i> ≤ 1997.

Каких трёхчленов среди них больше: имеющих целые корни или не имеющих действительных корней?

Можно ли прямоугольник $5 \times 7$ покрыть уголками из трёх клеток (т.е. фигурками, которые получаются из квадрата $2 \times 2$ удалением одной клетки), не выходящими за его пределы, в несколько слоёв так, чтобы каждая клетка прямоугольника была покрыта одинаковым числом клеток, принадлежащих уголкам?

В треугольник <i>ABC</i> вписана окружность, касающаяся сторон <i>AB, AC</i> и <i>BC</i> в точках <i>C</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>A</i><sub>1</sub> соответственно. Пусть <i>K</i> – точка на окружности, диаметрально противоположная точке <i>C</i><sub>1</sub>, <i>D</i> – точка пересечения прямых <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>A</i><sub>1</sub><i>K</i>. Докажите, что  <i>CD = CB</i><sub>1</sub>.

а) Каждую сторону четырёхугольника в процессе обхода по часовой стрелке продолжили на её длину. Оказалось, что новые концы построенных отрезков служат вершинами квадрата. Докажите, что исходный четырёхугольник – квадрат. б) Докажите, что если в результате такой же процедуры из некоторого <i>n</i>-угольника получается правильный <i>n</i>-угольник, то исходный многоугольник – правильный.

Вписанная окружность треугольника <i>ABC</i>  (<i>AB > BC</i>)  касается сторон <i>AB</i> и <i>AC</i> в точках <i>P</i> и <i>Q</i> соответственно, <i>RS</i> – средняя линия, параллельная стороне <i>AB</i>, <i>T</i> – точка пересечения прямых <i>PQ</i> и <i>RS</i>. Докажите, что точка <i>T</i> лежит на биссектрисе угла <i>B</i> треугольника <i>ABC</i>.

На сторонах единичного квадрата как на гипотенузах построены во внешнюю сторону прямоугольные треугольники. Пусть <i>A, B, C</i> и <i>D</i> – вершины их прямых углов, а <i>O</i><sub>1</sub>, <i>O</i><sub>2</sub>, <i>O</i><sub>3</sub> и <i>O</i><sub>4</sub> – центры вписанных окружностей этих треугольников. Докажите, что

  а) площадь четырёхугольника <i>ABCD</i> не превосходит 2;

  б) площадь четырёхугольника <i>O</i><sub>1</sub><i>O</i><sub>2</sub><i>O</i><sub>3</sub><i>O</i><sub>4</sub> не превосходит 1.

Вписанная окружность треугольника <i>ABC</i> касается сторон <i>AB</i> и <i>AC</i> в точках <i>P</i> и <i>Q</i> соответственно. Пусть <i>RS</i> – средняя линия треугольника, параллельная <i>AB, T</i> – точка пересечения прямых <i>PQ</i> и <i>RS</i>. Докажите, что <i>T</i> лежит на биссектрисе угла <i>B</i> треугольника.

Под каким углом видна из вершины прямого угла прямоугольного треугольника проекция на гипотенузу вписанной окружности?

  На доске написаны три функции:  <i>f</i><sub>1</sub>(<i>x</i>) = <i>x</i> + <sup>1</sup>/<sub><i>x</i></sub>,   <i>f</i><sub>2</sub>(<i>x</i>) = <i>x</i>²,   <i>f</i><sub>3</sub>(<i>x</i>) = (<i>x</i> – 1)².  Можно складывать, вычитать и перемножать эти функции (в том числе возводить в квадрат, в куб, ...), умножать их на произвольное число, прибавлять к ним произвольное число, а также проделывать эти операции с полученными выражениями. Получите таким образом функцию <sup>1</sup>/<sub><i>x</i></sub>.

  Докажите, что если стереть с доски любую из функций  <i>f</i&...

Пусть   <i>f</i>(<i>x</i>) = <i>x</i>² + 12<i>x</i> + 30.  Решите уравнение   <i>f</i>(<i>f</i>(<i>f</i>(<i>f</i>(<i>f</i>(<i>x</i>))))) = 0.

Расставьте на шахматной доске 32 коня так, чтобы каждый из них бил ровно двух других.

Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".)

На стороне $CD$ прямоугольника $ABCD$ взята точка $K$. Из вершины $B$ опустили перпендикуляр $BH$ на отрезок $AK$. Оказалось, что отрезки $AK$ и $BH$ делят прямоугольник на три части, в каждую из которых можно вписать круг (см. рисунок). Докажите, что если круги, касающиеся стороны $CD$, равны, то и третий круг им равен.<img src="/storage/problem-media/67500/problem_67500_img_2.jpg">

В равностороннем треугольнике $ABC$ проведены отрезки $ED$ и $GF$, так что образовались два равносторонних треугольника $ADE$ и $GFC$ со сторонами 1 и 100 (точки $E$ и $G$ лежат на стороне $AC$). Отрезки $EF$ и $DG$ пересекаются в точке $O$, причём угол $EOG$ равен $120^\circ$. Чему равна сторона треугольника $ABC$?<img src="/storage/problem-media/67482/problem_67482_img_2.png">

Основанием прямой треугольной призмы $ABCA_1B_1C_1$ служит прямоугольный треугольник $ABC$ с прямым углом $C$. Чему равно отношение объёмов (меньшего к большему), в котором призму делит плоскость, проходящая через середины рёбер $AA_1$, $A_1C_1$ и $BC$, если длины этих рёбер равны?

Из прямого угла прямоугольного треугольника опущена высота, и в образовавшиеся треугольники вписаны два квадрата (как на рисунке).<img src="/storage/problem-media/67473/problem_67473_img_2.png">Чему может быть равна сумма площадей этих квадратов, если длина биссектрисы прямого угла треугольника равна $1$?

На столе лежит колода из 36 карт, верхняя из которых червонный туз. За одно «перемешивание» фокусник снимает верхнюю половину колоды и кладёт рядом с нижней, а затем делает так, чтобы карты двух стопок чередовались: сначала нижняя карта левой или правой стопки, потом первая снизу другой стопки, потом вторая снизу карта первой стопки, вторая снизу карта другой стопки, и так далее (см. рисунок).<img src="/storage/problem-media/67472/problem_67472_img_2.png">Какое наименьшее число перемешиваний нужно сделать фокуснику, чтобы червонный туз оказался нижней картой колоды? При каждом перемешивании то, из какой половины карта окажется снизу, фокусник выбирает сам.

Между двумя восьмёрками в числе 88 вписали несколько нулей. Докажите, что можно всегда дописать слева в начало нового числа ещё несколько цифр так, чтобы получилось число, которое является полным кубом.

Даны две треугольные пирамиды с общим основанием $ABC$. Их вершины $S$ и $R$ лежат по разные стороны от плоскости $ABC$. Все боковые рёбра одной пирамиды параллельны соответствующим боковым граням другой. Докажите, что объём одной пирамиды вдвое больше объёма другой.

На совместный симпозиум лжецов (всегда лгут) и правдолюбов (всегда говорят правду) собрались 100 участников, среди которых не все лжецы и не все правдолюбы. Каждые два участника либо знакомы, либо незнакомы друг с другом. Каждый ответил «да» или «нет» на вопрос «Знакомы ли вы?» про каждого из остальных. Какое наименьшее количество ответов «да» могло быть получено?

В треугольнике $ABC$ с прямым углом $C$ провели высоту $CH$. Окружность, проходящая через точки $C$ и $H$, повторно пересекает отрезки $AC$, $CB$ и $BH$ в точках $Q$, $P$ и $R$ соответственно. Отрезки $HP$ и $CR$ пересекаются в точке $T$. Что больше: площадь треугольника $CPT$ или сумма площадей треугольников $CQH$ и $HTR$?<img src="/storage/problem-media/67451/problem_67451_img_2.png">

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка