Олимпиадные задачи из источника «Московская устная олимпиада по геометрии» для 5-8 класса
Московская устная олимпиада по геометрии
НазадВосстановите треугольник с помощью циркуля и линейки по точке пересечения высот и основаниям медианы и биссектрисы, проведённых к одной из сторон.
Дана окружность и хорда <i>AB</i>, отличная от диаметра. По большей дуге <i>AB</i> движется точка <i>C</i>. Окружность, проходящая через точки <i>A</i>, <i>C</i> и точку <i>H</i> пересечения высот треугольника <i>ABC</i>, повторно пересекает прямую <i>BC</i> в точке <i>P</i>. Докажите, что прямая <i>PH</i> проходит через фиксированную точку, не зависящую от положения точки <i>C</i>.
В треугольнике <i>ABC</i> точка <i>I</i> – центр вписанной окружности, точки <i>I<sub>A</sub></i>, <i>I<sub>C</sub></i> – центры вневписанных окружностей, касающихся сторон <i>BC</i> и <i>AB</i> соответственно. Точка <i>O</i> – центр описанной окружности треугольника <i>II<sub>A</sub>I<sub>C</sub></i>. Докажите, что <i>OI</i> ⊥ <i>AC</i>.
Дан равносторонний треугольник <i>ABC</i> и прямая <i>l</i>, проходящая через его центр. Точки пересечения этой прямой со сторонами <i>AB</i> и <i>BC</i> отразили относительно середин этих сторон соответственно. Докажите, что прямая, проходящая через получившиеся точки, касается вписанной окружности треугольника <i>ABC</i>.
На плоскости даны два равных многоугольника <i>F</i> и <i>F'</i>. Известно, что все вершины многоугольника <i>F</i> принадлежат <i>F'</i> (могут лежать внутри него или на границе). Верно ли, что все вершины этих многоугольников совпадают?
В трапеции <i>ABCD</i> стороны <i>AD</i> и <i>BC</i> параллельны, и <i>AB = BC = BD</i>. Высота <i>BK</i> пересекает диагональ <i>AC</i> в точке <i>M</i>. Найдите ∠<i>CDM</i>.
B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник.
Hа сторонах треугольника <i>ABC</i> во внешнюю сторону построены правильные треугольники <i>ABC</i><sub>1</sub>, <i>BCA</i><sub>1</sub>, <i>CAB</i><sub>1</sub>. Hа отрезке <i>A</i><sub>1</sub><i>B</i><sub>1</sub> во внешнюю сторону треугольника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub> построен правильный треугольник <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>2</sub>. Докажите, что <i>C</i> – середина отрезка <i>C</i><sub>1</sub><i>C</i><...
Дан произвольный треугольник <i>ABC</i>. Постройте прямую, проходящую через вершину <i>B</i> и делящую его на два треугольника, радиусы вписанных окружностей которых равны.
Hа сторонах <i>AB</i>, <i>BC</i> и <i>AC</i> треугольника <i>ABC</i> выбраны точки <i>C</i>', <i>A</i>' и <i>B</i>' соответственно так, что угол <i>A</i>'<i>C</i>'<i>B</i>' — прямой. Докажите, что отрезок <i>A</i>'<i>B</i>' длиннее диаметра вписанной окружности треугольника <i>ABC</i>.
Oпределите отношение сторон прямоугольника, описанного около уголка из пяти клеток.
Диагонали вписанного четырехугольника <i>ABCD</i> пересекаются в точке <i>K</i>.
Докажите, что касательная в точке <i>K</i> к описанной окружности треугольника <i>ABK</i>, параллельна <i>CD</i>.
Пусть <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> – середины сторон треугольника <i>ABC, I</i> – центр вписанной в него окружности, <i>C</i><sub>2</sub> – точка пересечения прямых <i>C</i><sub>1</sub><i>I</i> и <i>A</i><sub>1</sub><i>B</i><sub>1</sub>, <i>C</i><sub>3</sub> – точка пересечения прямых <i>CC</i><sub>2</sub> и <i>AB</i>. Докажите, что прямая <i>IC</i><sub>3</sub> перпендикулярна прямой <i>AB</i>.
В окружность вписан треугольник <i>ABC</i>. Постройте такую точку <i>P</i>, что точки пересечения прямых <i>AP, BP</i> и <i>CP</i> с данной окружностью являются вершинами равностороннего треугольника.
Дан шестиугольник <i>ABCDEF</i>, в котором <i>AB</i> = <i>BC</i>, <i>CD</i> = <i>DE</i>, <i>EF</i> = <i>FA</i>, а углы <i>A</i> и <i>C</i> — прямые. Докажите, что прямые <i>FD</i> и <i>BE</i> перпендикулярны.
В треугольнике <i>ABC</i> на стороне <i>AB</i> выбраны точки <i>K</i> и <i>L</i> так, что <i>AK</i> = <i>BL</i>, а на стороне <i>BC</i> — точки <i>M</i> и <i>N</i> так, что <i>CN</i> = <i>BM</i>. Докажите, что <i>KN</i> + <i>LM</i> ≥ <i>AC</i>.
Дан параллелограмм <i>ABCD</i>. Прямая, параллельная <i>AB</i>, пересекает биссектрисы углов <i>A</i> и <i>C</i> в точках <i>P</i> и <i>Q</i> соответственно.
Докажите, что углы <i>ADP</i> и <i>ABQ</i> равны.
В шестиугольнике пять углов по 90°, а один угол — 270° (см. рисунок). C помощью линейки без делений разделите его на два равновеликих многоугольника.<div align="center"><img src="/storage/problem-media/116184/problem_116184_img_2.gif"></div>
В выпуклом четырёхугольнике <i>ABCD</i> ∠<i>ABC</i> = 90°, ∠<i>BAC</i> = ∠<i>CAD, AC = AD, DH</i> – высота треугольника <i>ACD</i>.
В каком отношении прямая <i>BH</i> делит отрезок <i>CD</i>?
Постройте треугольник по стороне, противолежащему углу и медиане, проведенной к другой стороне (<i>исследование вопроса о количестве решений не требуется</i>).
Tреугольник разбили на пять треугольников, ему подобных. Bерно ли, что исходный треугольник – прямоугольный?
Bнутри окружности зафиксирована точка <i>P</i>. <i>C</i> — произвольная точка окружности, <i>AB</i> – хорда, проходящая через точку <i>P</i> и перпендикулярная отрезку <i>PC</i>. Tочки <i>X</i> и <i>Y</i> являются проекциями точки <i>P</i> на прямые <i>AC</i> и <i>BC</i>. Докажите, что все отрезки <i>XY</i> касаются одной и той же окружности.
Дан треугольник <i>ABC</i>. Tочки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> симметричны его вершинам относительно противоположных сторон. <i>C</i><sub>2</sub> – точка пересечения прямых <i>AB</i><sub>1</sub> и <i>BA</i><sub>1</sub>, точки <i>A</i><sub>2</sub> и <i>B</i><sub>2</sub> определяются аналогично. Докажите, что прямые <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>B</i><sub>1</sub><i>B</i><sub>2</sub> и <i>C</i><sub>1</sub><i>C</i&...
Пусть <i>I</i> – центр окружности, вписанной в треугольник <i>ABC</i>. Oкружность, описанная около треугольника <i>BIC</i>, пересекает прямые <i>AB</i> и <i>AC</i> в точках <i>E</i> и <i>F</i> соответственно. Докажите, что прямая <i>EF</i> касается окружности, вписанной в треугольник <i>ABC</i>.
Постройте параллелограмм <i>ABCD</i>, если на плоскости отмечены три точки: середины его высот <i>BH</i> и <i>BP</i> и середина стороны <i>AD</i>.