Олимпиадные задачи из источника «1955 год» - сложность 4 с решениями

Дан треугольник<i>A</i><sub>0</sub><i>B</i><sub>0</sub><i>C</i><sub>0</sub>. На его сторонах<i>A</i><sub>0</sub><i>B</i><sub>0</sub>,<i>B</i><sub>0</sub><i>C</i><sub>0</sub>,<i>C</i><sub>0</sub><i>A</i><sub>0</sub>взяты точки<i>C</i><sub>1</sub>,<i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>соответственно. На сторонах<i>A</i><sub>1</sub><i>B</i><sub>1</sub>,<i>B</i><sub>1</sub><i>C</i><sub>1</sub>,<i>C</i>...

Неравенство<div align="CENTER"> <i>Aa</i>(<i>Bb</i> + <i>Cc</i>) + <i>Bb</i>(<i>Cc</i> + <i>Aa</i>) + <i>Cc</i>(<i>Aa</i> + <i>Bb</i>) > $\displaystyle {\textstyle\frac{1}{2}}$(<i>ABc</i><sup>2</sup> + <i>BCa</i><sup>2</sup> + <i>CAb</i><sup>2</sup>), </div>где<i>a</i>> 0,<i>b</i>> 0,<i>c</i>> 0 — данные числа, выполняется для всех<i>A</i>> 0,<i>B</i>> 0,<i>C</i>> 0. Можно ли из отрезков<i>a</i>,<i>b</i>,<i>c</i>составить треугольник?

Трёхчлен  <i>ax</i>² + <i>bx + c</i>  при всех целых <i>x</i> является точным квадратом. Доказать, что тогда  <i>ax</i>² + <i>bx + c</i> = (<i>dx + e</i>)².

В турнире собираются принять участие 25 шахматистов. Все они играют в разную силу, и при встрече всегда побеждает сильнейший.

Какое наименьшее число партий требуется, чтобы определить двух сильнейших игроков?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка