Олимпиадные задачи из источника «Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел» - сложность 2 с решениями
Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел
НазадИзвестно, что квадратные уравнения <i>ax</i>² + <i>bx + c</i> = 0 и <i>bx</i>² + <i>cx + a</i> = 0 (<i>a, b</i> и <i>c</i> – отличные от нуля числа) имеют общий корень.
Найдите его.
Доказать, что остаток от деления простого числа на 30 – простое число или единица.
Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например, <sup>49</sup>/<sub>98</sub> = <sup>4</sup>/<sub>8</sub>. Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить".
Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.
Найдите сумму 1·1! + 2·2! + 3·3! + … + <i>n</i>·<i>n</i>!.
Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?
Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки?
Даны два натуральных числа <i>m</i> и <i>n</i>. Выписываются все различные делители числа <i>m</i> – числа <i>a, b, ..., k</i> – и все различные делители числа <i>n</i> – числа <i>s, t, ..., z</i>. (Само число и 1 тоже включаются в число делителей.) Оказалось, что <i>a + b + ... + k = s + t + ... + z</i> и <sup>1</sup>/<sub><i>a</i></sub> + <sup>1</sup>/<sub><i>b</i></sub> + ... + <sup>1</sup>/<sub><i>k</i></sub> = <sup>1</sup>/<sub><i>s</i></sub> + <sup>1</sup>/<sub><i>t</i></sub> + ... + <sup>1</sup>/<sub>&l...
Решить в натуральных числах систему
<i>x + y = zt</i>,
<i>z + t = xy</i>.
Доказать: число делителей <i>n</i> не превосходит 2<img width="27" height="33" align="MIDDLE" border="0" src="/storage/problem-media/78208/problem_78208_img_2.gif">.
Имеется система уравнений *<i>x + *y + *z</i>= 0, *<i>x + *y + *z</i>= 0, *<i>x + *y + *z</i>= 0.Два человека поочерёдно вписывают вместо звёздочек числа.
Доказать, что начинающий всегда может добиться того, чтобы система имела ненулевое решение.
Известно, что <i>ax</i><sup>4</sup> + <i>bx</i>³ + <i>cx</i>² + <i>dx + e</i>, где <i>a, b, c, d, e</i> – данные целые числа, при любом целом <i>x</i> делится на 7.
Доказать, что все числа <i>a, b, c, d, e</i> делятся на 7.
Дано уравнение <i>x<sup>n</sup> – a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> – <i>a</i><sub>2</sub><i>x</i><sup><i>n</i>–2</sup> – ... – <i>a</i><sub><i>n</i>–1</sub><i>x – a<sub>n</sub></i> = 0, где <i>a</i><sub>1</sub> ≥ 0, <i>a</i><sub>2</sub> ≥ 0, <i>a<sub>n</sub></i> ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.
Известно, что модули всех корней уравнений <i>x</i>² + <i>Ax + B</i> = 0, <i>x</i>² + <i>Cx + D</i> = 0 меньше единицы. Доказать, что модули корней уравнения
<i>x</i>² + ½ (<i>A + C</i>)<i>x</i> + ½ (<i>B + D</i>)<i>x</i> = 0 также меньше единицы. <i>A, B, C, D</i> – действительные числа.
Дано 100 чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a</i><sub>100</sub>, удовлетворяющих условиям:
<i>a</i><sub>1</sub> – 4<i>a</i><sub>2</sub> + 3<i>a</i><sub>3</sub> ≥ 0,
<i>a</i><sub>2</sub> – 4<i>a</i><sub>3</sub> + 3<i>a</i><sub>4</sub> ≥ 0,
<i>a</i><sub>3</sub> – 4<i>a</i><sub>4</sub> + 3<i>a</i><sub>5</sub> ≥ 0,
...,
<i>a</i><sub>99</sub> – 4<i>a</i><sub>100</sub> +...
Найти корни уравнения <img align="absmiddle" src="/storage/problem-media/77992/problem_77992_img_2.gif">
Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.
Докажите, что ни одно семизначное число, составленное посредством этих жетонов, не делится на другое.
Доказать, что многочлен с целыми коэффициентами <i>a</i><sub>0</sub><i>x<sup>n</sup></i> + <i>a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub><i>n</i>–1</sub><i>x</i> + <i>a<sub>n</sub></i>, принимающий при <i>x</i> = 0 и <i>x</i> = 1 нечётные значения, не имеет целых корней.
Решить систему:
<i>x + y + z = a,
x</i>² + <i>y</i>² + <i>z</i>² = <i>a</i>²,
<i>x</i>³ + <i>y</i>³ + <i>z</i>³ = <i>a</i>³.
Какому условию должны удовлетворять коэффициенты <i>a, b, c</i> уравнения <i>x</i>³ + <i>ax</i>² + <i>bx + c</i>, чтобы три его корня составляли арифметическую прогрессию?
Докажите, что для любого нечётного натурального числа <i>a</i> существует такое натуральное число <i>b</i>, что 2<sup><i>b</i></sup> – 1 делится на <i>a</i>.
Упростите выражение (избавьтесь от как можно большего количества знаков корней): <img align="absmiddle" src="/storage/problem-media/64993/problem_64993_img_2.gif"> .
Докажите, что при <i>n</i> > 0 многочлен <i>x</i><sup>2<i>n</i>+1</sup> – (2<i>n</i> + 1)<i>x</i><sup><i>n</i>+1</sup> + (2<i>n</i> + 1)<i>x<sup>n</sup></i> – 1 делится на (<i>x</i> – 1)³.
Докажите, что при <i>n</i> > 0 многочлен <i>P</i>(<i>x</i>) = <i>n</i>²<i>x</i><sup><i>n</i>+2</sup> – (2<i>n</i>² + 2<i>n</i> – 1)<i>x</i><sup><i>n</i>+1</sup> + (<i>n</i> + 1)²<i>x<sup>n</sup> – x</i> – 1 делится на (<i>x</i> – 1)³.
Обозначим через<i>S</i>сумму следующего ряда:<div align="CENTER"> <!-- MATH \begin{equation} S=1-1+1-1+1-\ldots \end{equation} --> <table cellpadding="0" width="100%" align="CENTER"> <tr valign="MIDDLE"> <td nowrap align="CENTER"><i>S</i> = 1 - 1 + 1 - 1 + 1 -...</td> <td nowrap width="10" align="RIGHT"> (12.1)</td></tr> </table></div><br clear="ALL">Преобразовав равенство (<a href="https://mirolimp.ru/tasks/161543">12.1</a>), можно получить уравнение, из которого находится<i>S</i>:<div align="CENTER"> <i>S</i> = 1 - (1 - 1 + 1 - 1 +...) = 1 -...