Олимпиадные задачи из источника «глава 6. Многочлены»
Известно, что квадратные уравнения <i>ax</i>² + <i>bx + c</i> = 0 и <i>bx</i>² + <i>cx + a</i> = 0 (<i>a, b</i> и <i>c</i> – отличные от нуля числа) имеют общий корень.
Найдите его.
Решить в натуральных числах систему
<i>x + y = zt</i>,
<i>z + t = xy</i>.
В квадратном уравнении <i>x</i>² + <i>px + q</i> коэффициенты <i>p, q</i> независимо пробегают все значения от –1 до 1 включительно.
Найти множество значений, которые при этом принимает действительный корень данного уравнения.
Найти все многочлены <i>P</i>(<i>x</i>), для которых справедливо тождество: <i>xP</i>(<i>x</i> – 1) ≡ (<i>x</i> – 26)<i>P</i>(<i>x</i>).
Дано уравнение <i>x<sup>n</sup> – a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> – <i>a</i><sub>2</sub><i>x</i><sup><i>n</i>–2</sup> – ... – <i>a</i><sub><i>n</i>–1</sub><i>x – a<sub>n</sub></i> = 0, где <i>a</i><sub>1</sub> ≥ 0, <i>a</i><sub>2</sub> ≥ 0, <i>a<sub>n</sub></i> ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.
Известно, что модули всех корней уравнений <i>x</i>² + <i>Ax + B</i> = 0, <i>x</i>² + <i>Cx + D</i> = 0 меньше единицы. Доказать, что модули корней уравнения
<i>x</i>² + ½ (<i>A + C</i>)<i>x</i> + ½ (<i>B + D</i>)<i>x</i> = 0 также меньше единицы. <i>A, B, C, D</i> – действительные числа.
Решить систему:
<i>x + y + z = a,
x</i>² + <i>y</i>² + <i>z</i>² = <i>a</i>²,
<i>x</i>³ + <i>y</i>³ + <i>z</i>³ = <i>a</i>³.
Какому условию должны удовлетворять коэффициенты <i>a, b, c</i> уравнения <i>x</i>³ + <i>ax</i>² + <i>bx + c</i>, чтобы три его корня составляли арифметическую прогрессию?
Пусть <i>P</i>(x) = <i>a<sub>n</sub>x<sup>n</sup> + ... + a</i><sub>1</sub><i>x + a</i><sub>0</sub> – многочлен с целыми коэффициентами.
Докажите, что хотя бы одно из чисел |3<sup><i>n</i>+1</sup> – <i>P</i>(<i>n</i> + 1)|, ..., |3<sup>1</sup> – <i>P</i>(1)|, |1 – <i>P</i>(0)| не меньше 1.
Докажите, что многочлен <i>P</i>(<i>x</i>) = <i>a</i><sub>0</sub> + <i>a</i><sub>1</sub><i>x + ... + a<sub>n</sub>x<sup>n</sup></i> имеет число –1 корнем кратности <i>m</i> + 1 тогда и только тогда, когда выполнены условия:
<i>a</i><sub>0</sub> – <i>a</i><sub>1</sub> + <i>a</i><sub>2</sub> – <i>a</i><sub>3</sub> + ... + (–1)<i><sup>n</sup>a<sub>n</sub></i> = 0,
– <i>a</i><sub>1</sub> + 2<i>a</i><sub>2</sub> – 3<i>a</i><sub>3</sub> + ... + (–1)<i>&l...
Докажите, что при <i>n</i> > 0 многочлен <i>x</i><sup>2<i>n</i>+1</sup> – (2<i>n</i> + 1)<i>x</i><sup><i>n</i>+1</sup> + (2<i>n</i> + 1)<i>x<sup>n</sup></i> – 1 делится на (<i>x</i> – 1)³.
Докажите, что при <i>n</i> > 0 многочлен <i>P</i>(<i>x</i>) = <i>n</i>²<i>x</i><sup><i>n</i>+2</sup> – (2<i>n</i>² + 2<i>n</i> – 1)<i>x</i><sup><i>n</i>+1</sup> + (<i>n</i> + 1)²<i>x<sup>n</sup> – x</i> – 1 делится на (<i>x</i> – 1)³.
Докажите, что многочлен <i>P</i>(<i>x</i>) делится на свою производную тогда и только тогда, когда <i>P</i>(<i>x</i>) имеет вид <i>P</i>(<i>x</i>) = <i>a<sub>n</sub></i>(<i>x – x</i><sub>0</sub>)<sup><i>n</i></sup>.
Решите систему <img width="20" height="127" align="MIDDLE" border="0" src="/storage/problem-media/61064/problem_61064_img_2.gif"><img width="318" height="127" align="MIDDLE" border="0" src="/storage/problem-media/61064/problem_61064_img_3.gif"> (<i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i>, <i>b</i><sub>1</sub>, ..., <i>b<sub>n</sub></i> – различные числа.)
Докажите, что если <i>f</i>(<i>x</i>) – многочлен, степень которого меньше <i>n</i>, то дробь <img width="205" height="53" align="MIDDLE" border="0" src="/storage/problem-media/61063/problem_61063_img_2.gif"> (<i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i> – произвольные попарно различные числа) может быть представлена в виде суммы <i>n</i> простейших дробей: <img align="middle" src="/storage/problem-media/61063/problem_61063_img_3.gif">
где <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, ..., <i>A<sub>...
Про многочлен <i>f</i>(<i>x</i>) = <i>x</i><sup>10</sup> + <i>a</i><sub>9</sub><i>x</i><sup>9</sup> + ... + <i>a</i><sub>0</sub> известно, что <i>f</i>(1) = <i>f</i>(–1), ..., <i>f</i>(5) = <i>f</i>(–5). Докажите, что <i>f</i>(<i>x</i>) = <i>f</i>(– <i>x</i>) для любого действительного <i>x</i>.
Пусть <i>a, b</i> и <i>c</i> – три различных числа. Докажите, что из равенств
<img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61060/problem_61060_img_2.gif"><img width="165" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61060/problem_61060_img_3.gif">
следует, что <i>x = y = z</i> = 0.
Пусть <i>a, b</i> и <i>c</i> – три различных числа. Решите систему <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61059/problem_61059_img_2.gif"><img width="200" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61059/problem_61059_img_3.gif">
На плоскости расположено 100 точек. Известно, что через каждые четыре из них проходит график некоторого квадратного трёхчлена. Докажите, что все 100 точек лежат на графике одного квадратного трёхчлена.
Два корабля двигаются с постоянными скоростями. Расстояния между ними, измеренные в 12, 14 и 15 часов, равнялись
5, 7 и 2 километра соответственно. Каким было расстояние между кораблями в 13 часов?
Корабль с постоянной скоростью проплывает мимо небольшого острова. Капитан каждый час измеряет расстояние до острова.
В 12, 14 и 15 часов расстояния равнялись 7, 5 и 11 километров соответственно.
Каким было расстояние до острова в 13 часов? Чему оно будет равно в 16 часов?
Постройте многочлены <i>f</i>(<i>x</i>) степени не выше 2, которые удовлетворяют условиям:
а) <i>f</i>(0) = 1, <i>f</i>(1) = 3, <i>f</i>(2) = 3;
б) <i>f</i>(–1) = –1, <i>f</i>(0) = 2, <i>f</i>(1) = 5;
в) <i>f</i>(–1) = 1, <i>f</i>(0) = 0, <i>f</i>(2) = 4.
Какие остатки дает многочлен <i>f</i>(<i>x</i>) из задачи <a href="https://mirolimp.ru/tasks/161052">161052</a> при делении на многочлены вида <i>x</i> - <i>x</i><sub>i</sub>?
Пусть <i>A, B</i> и <i>C</i> – остатки от деления многочлена <i>P</i>(<i>x</i>) на <i>x – a, x – b</i> и <i>x – c</i>.
Найдите остаток от деления того же многочлена на произведение (<i>x – a</i>)(<i>x – b</i>)(<i>x – c</i>).
Пусть <i>x</i><sub>1</sub> < <i>x</i><sub>2</sub> < ... < <i>x<sub>n</sub></i> – действительные числа. Докажите, что для любых <i>y</i><sub>1</sub>, <i>y</i><sub>2</sub>, ..., <i>y<sub>n</sub></i> существует единственнный многочлен <i>f</i>(<i>x</i>) степени не выше <i>n</i> – 1, такой, что <i>f</i>(<i>x</i><sub>1</sub>) = <i>y</i><sub>1</sub>, ..., <i>f</i>(<i>x<sub>n</sub></i>) = <i>y<sub>n</sub></i>.