Олимпиадные задачи из источника «1992-1993» - сложность 3 с решениями
1992-1993
НазадНа доске написано число 0. Два игрока по очереди приписывают справа к выражению на доске: первый – знак + или<i> - </i>, второй – одно из натуральных чисел от 1 до 1993. Игроки делают по 1993 хода, причем второй записывает каждое из чисел от 1 до 1993 ровно по одному разу. В конце игры второй игрок получает выигрыш, равный модулю алгебраической суммы, написанной на доске. Какой наибольший выигрыш он может себе гарантировать?
Докажите, что уравнение <i>x</i>³ + <i>y</i>³ = 4(<i>x</i>²<i>y + xy</i>² + 1) не имеет решений в целых числах.
Из квадратной доски 1000×1000 клеток удалены четыре прямоугольника 2×994 (см. рис.). <center> <img src="/storage/problem-media/109542/problem_109542_img_2.gif"> </center>На клетке, помеченной звездочкой, стоит<i>кентавр</i>– фигура, которая за один ход может перемещаться на одну клетку вверх, влево или по диагонали вправо и вверх. Двое игроков ходят кентавром по очереди. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?
Докажите, что <img align="absmiddle" src="/storage/problem-media/109540/problem_109540_img_2.gif">
Решите в положительных числах систему уравнений <img src="/storage/problem-media/109538/problem_109538_img_2.gif">
В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из каждого города можно проехать по дорогам в любой другой.
Докажите, что это можно сделать не более, чем с 62 пересадками. (Дорога соединяет между собой два города.)
Дан правильный 2<i>n</i>-угольник.
Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.
Точка <i>O</i> – основание высоты четырёхугольной пирамиды. Сфера с центром <i>O</i> касается всех боковых граней пирамиды. Точки <i>A, B, C</i> и <i>D</i> взяты последовательно по одной на боковых ребрах пирамиды так, что отрезки <i>AB, BC</i> и <i>CD</i> проходят через три точки касания сферы с гранями.
Докажите, что отрезок <i>AD</i> проходит через четвёртую точку касания.
Докажите, что для любого натурального <i>n</i> > 2 число <img align="absmiddle" src="/storage/problem-media/109530/problem_109530_img_2.gif"> делится на 8.
На доске написано <i>n</i> выражений вида *<i>x</i>² + *<i>x</i> + * = 0 (<i>n</i> – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3<i>n</i> ходов получится <i>n</i> квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?
Квадратный трёхчлен <i>f</i>(<i>x</i>) разрешается заменить на один из трёхчленов <img align="absmiddle" src="/storage/problem-media/109523/problem_109523_img_2.gif"> или <img align="absmiddle" src="/storage/problem-media/109523/problem_109523_img_3.gif"> Можно ли с помощью таких операций из квадратного трёхчлена <i>x</i>² + 4<i>x</i> + 3 получить трёхчлен <i>x</i>² + 10<i>x</i> + 9?
Отрезки<i> AB </i>и<i> CD </i>длины 1 пересекаются в точке<i> O </i>, причем<i> <img src="/storage/problem-media/109522/problem_109522_img_2.gif"> AOC=</i>60<i><sup>o</sup> </i>. Докажите, что<i> AC+BD<img src="/storage/problem-media/109522/problem_109522_img_3.gif"></i>1.
Назовем усреднением последовательности<i>a<sub>k</sub> </i>действительных чисел последовательность<i>a'<sub>k</sub> </i>с общим членом<i> a'<sub>k</sub>=<img src="/storage/problem-media/109520/problem_109520_img_2.gif"> </i>. Рассмотрим последовательности:<i>a<sub>k</sub> </i>,<i>a'<sub>k</sub> </i>– ее усреднение,<i>a''<sub>k</sub> </i>– усреднение последовательности<i>a'<sub>k</sub> </i>, и т.д. Если все эти последовательности состоят из целых чисел, то будем говорить, что последовательность<i>a<sub>k</sub> </i>– хорошая. Докажите, что если последователь...
Квадратная доска разделена сеткой горизонтальных и вертикальных прямых на <i>n</i>² клеток со стороной 1. При каком наибольшем <i>n</i> можно отметить <i>n</i> клеток так, чтобы каждый прямоугольник площади не менее <i>n</i> со сторонами, идущими по линиям сетки, содержал хотя бы одну отмеченную клетку?
Верно ли, что любые два прямоугольника равной площади можно расположить на плоскости так, что любая горизонтальная прямая, пересекающая один из них, будет пересекать и второй, причём по отрезку той же длины?
Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной окружности.
Длины сторон треугольника – простые числа. Докажите, что его площадь не может быть целым числом.
В турнире по теннису <i>n</i> участников хотят провести парные (двое на двое) матчи так, чтобы каждый из участников имел своим противником каждого из остальных ровно в одном матче. При каких <i>n</i> возможен такой турнир?
В строку записаны в некотором порядке натуральные числа от 1 до 1993. Над строкой производится следующая операция: если на первом месте стоит число <i>k</i>, то первые <i>k</i> чисел в строке переставляются в обратном порядке. Докажите, что через несколько таких операций на первом месте окажется число 1.
Найдите все четверки действительных чисел, в каждой из которых любое число равно произведению каких-либо двух других чисел.
Найдите все функции<i> f</i>(<i>x</i>), определенные при всех положительных<i> x </i>, принимающие положительные значения и удовлетворяющие при любых положительных<i> x </i>и<i> y </i>равенству<i> f</i>(<i>x<sup>y</sup></i>)<i>=f</i>(<i>x</i>)<i><sup>f</sup></i>(<i>y</i>).
На сторонах<i> BC </i>и<i> CD </i>параллелограмма<i> ABCD </i>взяты точки<i> M </i>и<i> N </i>соответственно. Диагональ<i> BD </i>пересекает стороны<i> AM </i>и<i> AN </i>треугольника<i> AMN </i>соответственно в точках<i> E </i>и<i> F </i>, разбивая его на две части. Докажите, что эти две части имеют одинаковые площади тогда и только тогда, когда точка<i> K </i>, определяемая условиями<i> EK || AD </i>,<i> FK || AB </i>, лежит на отрезке<i> MN </i>.
На стороне <i>AC</i> остроугольного треугольника <i>ABC</i> выбрана точка <i>D</i>. Медиана <i>AM</i> пересекает высоту <i>CH</i> и отрезок <i>BD</i> в точках <i>N</i> и <i>K</i> соответственно.
Докажите, что если <i>AK = BK</i>, то <i>AN</i> = 2<i>KM</i>.
На диагонали <i>AC</i> ромба <i>ABCD</i> взята произвольная точка <i>E</i>, отличная от точек <i>A</i> и <i>C</i>, а на прямых <i>AB</i> и <i>BC</i> – точки <i>N</i> и <i>M</i> соответственно, причём
<i>AE = NE</i> и <i>CE = ME</i>. Пусть <i>K</i> – точка пересечения прямых <i>AM</i> и <i>CN</i>. Докажите, что точки <i>K, E</i> и <i>D</i> лежат на одной прямой.
На сторонах <i>AB</i> и <i>BC</i> треугольника <i>ABC</i> выбраны точки <i>M</i> и <i>N</i> соответственно. Отрезки <i>AN</i> и <i>CM</i> пересекаются в точке <i>O</i>, причём <i>AO = CO</i>. Обязательно ли треугольник <i>ABC</i> равнобедренный, если а) <i>AM = CN</i>; б) <i>BM = BN</i>?