Олимпиадные задачи из источника «Региональный этап»

На доске написано число 0. Два игрока по очереди приписывают справа к выражению на доске: первый – знак + или<i> - </i>, второй – одно из натуральных чисел от 1 до 1993. Игроки делают по 1993 хода, причем второй записывает каждое из чисел от 1 до 1993 ровно по одному разу. В конце игры второй игрок получает выигрыш, равный модулю алгебраической суммы, написанной на доске. Какой наибольший выигрыш он может себе гарантировать?

Три прямоугольных треугольника расположены в одной полуплоскости относительно данной прямой <i>l</i> так, что один из катетов каждого треугольника лежит на этой прямой. Известно, что существует прямая, параллельная <i>l</i>, пересекающая треугольники по равным отрезкам. Докажите, что если расположить треугольники в одной полуплоскости относительно прямой <i>l</i> так, чтобы другие их катеты лежали на прямой <i>l</i>, то также найдётся прямая, параллельная <i> l </i>, пересекающая их по равным отрезкам.

Докажите, что уравнение  <i>x</i>³ + <i>y</i>³ = 4(<i>x</i>²<i>y + xy</i>² + 1)  не имеет решений в целых числах.

В колоде<i> n </i>карт. Часть из них лежит рубашками вверх, остальные – рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?

Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, кратное 11.

Докажите, что для любых действительных чисел <i>a</i> и <i>b</i> справедливо неравенство  <i>a</i>² + <i>ab + b</i>² ≥ 3(<i>a + b</i> – 1).

Из квадратной доски 1000×1000 клеток удалены четыре прямоугольника 2×994 (см. рис.). <center> <img src="/storage/problem-media/109542/problem_109542_img_2.gif"> </center>На клетке, помеченной звездочкой, стоит<i>кентавр</i>– фигура, которая за один ход может перемещаться на одну клетку вверх, влево или по диагонали вправо и вверх. Двое игроков ходят кентавром по очереди. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?

Докажите, что   <img align="absmiddle" src="/storage/problem-media/109540/problem_109540_img_2.gif">

У каждого из жителей города<i> N </i>знакомые составляют не менее 30 населения города. Житель идет на выборы, если баллотируется хотя бы один из его знакомых. Докажите, что можно так провести выборы мэра города<i> N </i>из двух кандидатов, что в них примет участие не менее половины жителей.

Решите в положительных числах систему уравнений     <img src="/storage/problem-media/109538/problem_109538_img_2.gif">

В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из каждого города можно проехать по дорогам в любой другой.

Докажите, что это можно сделать не более, чем с 62 пересадками. (Дорога соединяет между собой два города.)

Семь треугольных пирамид стоят на столе. Для любых трех из них существует горизонтальная плоскость, которая пересекает их по треугольникам равной площади. Доказать, что существует плоскость, пересекающая все семь пирамид по треугольникам равной площади.

На доске написано:  <i>x</i>³ + ...<i>x</i>² + ...<i>x</i> + ... = 0.  Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?

Дан правильный 2<i>n</i>-угольник.

Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.

Точка <i>O</i> – основание высоты четырёхугольной пирамиды. Сфера с центром <i>O</i> касается всех боковых граней пирамиды. Точки <i>A, B, C</i> и <i>D</i> взяты последовательно по одной на боковых ребрах пирамиды так, что отрезки <i>AB, BC</i> и <i>CD</i> проходят через три точки касания сферы с гранями.

Докажите, что отрезок <i>AD</i> проходит через четвёртую точку касания.

Докажите, что для любого натурального  <i>n</i> > 2  число   <img align="absmiddle" src="/storage/problem-media/109530/problem_109530_img_2.gif">   делится на 8.

Найдите все натуральные числа <i>n</i>, для которых сумма цифр числа 5<i><sup>n</sup></i> равна 2<i><sup>n</sup></i>.

Дан правильный треугольник<i> ABC </i>. Через вершину<i> B </i>проводится произвольная прямая<i> l </i>, а через точки<i> A </i>и<i> C </i>проводятся прямые, перпендикулярные прямой<i> l </i>, пересекающие её в точках<i> D </i>и<i> E </i>. Затем, если точки<i> D </i>и<i> E </i>различны, строятся правильные треугольники<i> DEP </i>и<i> DET </i>, лежащие по разные стороны от прямой<i> l </i>. Найдите геометрическое место точек<i> P </i>и<i> T </i>.

На сторонах<i> BC </i>и<i> CD </i>параллелограмма<i> ABCD </i>взяты точки<i> M </i>и<i> N </i>соответственно. Диагональ<i> BD </i>пересекает стороны<i> AM </i>и<i> AN </i>треугольника<i> AMN </i>соответственно в точках<i> E </i>и<i> F </i>, разбивая его на две части. Докажите, что эти две части имеют одинаковые площади тогда и только тогда, когда точка<i> K </i>, определяемая условиями<i> EK || AD </i>,<i> FK || AB </i>, лежит на отрезке<i> MN </i>.

На стороне <i>AC</i> остроугольного треугольника <i>ABC</i> выбрана точка <i>D</i>. Медиана <i>AM</i> пересекает высоту <i>CH</i> и отрезок <i>BD</i> в точках <i>N</i> и <i>K</i> соответственно.

Докажите, что если  <i>AK = BK</i>,  то  <i>AN</i> = 2<i>KM</i>.

На диагонали <i>AC</i> ромба <i>ABCD</i> взята произвольная точка <i>E</i>, отличная от точек <i>A</i> и <i>C</i>, а на прямых <i>AB</i> и <i>BC</i> – точки <i>N</i> и <i>M</i> соответственно, причём

<i>AE = NE</i>  и  <i>CE = ME</i>.  Пусть <i>K</i> – точка пересечения прямых <i>AM</i> и <i>CN</i>. Докажите, что точки <i>K, E</i> и <i>D</i> лежат на одной прямой.

На сторонах <i>AB</i> и <i>BC</i> треугольника <i>ABC</i> выбраны точки <i>M</i> и <i>N</i> соответственно. Отрезки <i>AN</i> и <i>CM</i> пересекаются в точке <i>O</i>, причём  <i>AO = CO</i>.  Обязательно ли треугольник <i>ABC</i> равнобедренный, если   а)  <i>AM = CN</i>;   б)  <i>BM = BN</i>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка