Олимпиадные задачи из источника «1972 год»
Озеро имеет форму невыпуклого<nobr><i>n</i>-угольника.</nobr>Докажите, что множество точек озера, из которых видны все его берега, либо пусто, либо заполняет внутренность выпуклого<nobr><i>m</i>-угольника,</nobr>где<nobr><i>m</i>≤<i>n</i>.</nobr>
Двое играют в такую игру. Один задумывает натуральное<nobr>число <i>n</i>,</nobr>а другой задаёт вопросы типа «верно ли, что<i>n</i>не<nobr>меньше <i>x</i>»</nobr><nobr>(число <i>x</i></nobr>он может выбирать по своему усмотрению) и получает ответы «да» или «нет». Каждой возможной<nobr>стратегии <i>T</i></nobr>второго игрока сопоставим функцию<i>f</i><sub><i>T</i></sub>(<i>n</i>), равную числу вопросов (до отгадывания), если было задумано<nobr>число <i>n</i>.</nobr>Пусть, например,<nobr>стратегия <i>T</i></nobr>состоит в том, что сначала задают вопросы: «верно ли, что<i>n</i>не...
Для каждого непрямоугольного треугольника <i>T</i> обозначим через <i>T</i><sub>1</sub> треугольник, вершинами которого служат основания высот треугольника <i>T</i>; через <i>T</i><sub>2</sub> – треугольник, вершинами которого служат основания высот треугольника <i>T</i><sub>1</sub>; аналогично определим треугольники <i>T</i><sub>3</sub>, <i>T</i><sub>4</sub> и так далее. Каким должен быть треугольник <i>T</i>, чтобы
а) треугольник <i>T</i><sub>1</sub> был остроугольным?
б) в последовательности <i>T</i><sub>1</sub>, <i>T</i><sub>2</sub>, <i>T</i>...
Пусть <i>a</i> – заданное вещественное число, <i>n</i> – натуральное число, <i>n</i> > 1.
Найдите все такие <i>x</i>, что сумма корней <i>n</i>-й степени из чисел <i>x<sup>n</sup> – a<sup>n</sup></i> и 2<i>a<sup>n</sup> – x<sup>n</sup></i> равна числу <i>a</i>.
а) Каждая сторона равностороннего треугольника разбита на <i>m</i> равных частей, и через точки деления проведены прямые, параллельные сторонам, разрезавшие треугольник на <i>m</i>² маленьких треугольников. Среди вершин полученных треугольников нужно отметить <i>N</i> вершин так, чтобы ни для каких двух отмеченных вершин <i>A</i> и <i>B</i> отрезок <i>АВ</i> не был параллелен ни одной из сторон. Каково наибольшее возможное значение <i>N</i> (при заданном <i>m</i>)? б) Разделим каждое ребро тетраэдра на <i>m</i> равных частей и через точки деления проведём плоскости, параллельные граням. Среди вершин полученных многогранников отметим <i>N</i> вершин так, чтобы никакие...
В квадратной таблице 4×4 расставлены числа 1, 2, 3, ..., 16 так, что сумма четырёх чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей равна одному и тому же числу, причём числа 1 и 16 стоят в противоположных углах таблицы. Докажите, что в этом "магическом квадрате" сумма любых двух чисел, расположенных симметрично относительно центра квадрата, одна и та же.
На плоскости нарисован правильный шестиугольник, длина стороны которого равна 1. При помощи одной только линейки постройте отрезок, длина которого равна <img align="absmiddle" src="/storage/problem-media/73706/problem_73706_img_2.gif">
Пусть <i>k</i> и <i>n</i> – натуральные числа, <i>k ≤ n</i>. Расставьте первые <i>n</i>² натуральных чисел в таблицу <i>n</i>×<i>n</i> так, чтобы в каждой строке числа шли в порядке возрастания и при этом сумма чисел в <i>k</i>-м столбце была а) наименьшей; б) наибольшей.
В любой арифметической прогрессии <i>a, a + d, a</i> + 2<i>d, ..., a + nd</i>, ..., составленной из натуральных чисел, есть бесконечно много членов, в разложении которых на простые множители входят в точности одни и те же простые числа. Докажите это.
а) Школьники одного класса в сентябре ходили в два туристических похода. В первом походе мальчиков было меньше ⅖ общего числа участников этого похода, во втором – тоже меньше ⅖. Докажите, что в этом классе мальчики составляют меньше <sup>4</sup>/<sub>7</sub> общего числа учеников, если известно, что каждый из учеников участвовал по крайней мере в одном походе. б) Пусть в <i>k</i>-м походе, где 1 ≤ <i>k ≤ n</i>, мальчики составляли α<sub><i>k</i></sub>-ю часть общего количества участников этого похода. Какую наибольшую долю могут составлять мальчики на общей встрече всех туристов (всех, кто участвовал хотя бы в одном из <i>n</i> походов)?
На окружности расположено множество<nobr><i>F</i> точек,</nobr>состоящее из<nobr>100 дуг.</nobr>При любом<nobr>повороте <i>R</i></nobr>окружности множество<i>R</i>(<i>F</i>) имеет хотя бы одну общую точку с<nobr>множеством <i>F</i>.</nobr><span class="prim">(Другими словами, для любого <nobr>угла α</nobr> <nobr>от 0°</nobr> <nobr>до 180°</nobr> в <nobr>множестве <i>F</i></nobr> можно указать две точки, отстоящие одна от другой на <nobr>угол α.)</nobr></span>Какую наименьшую сумму длин могут иметь<nobr>100 дуг,</nobr>образующих<nobr>множество <i>F</i>?</nobr&g...
На белых клетках бесконечной шахматной доски, заполняющей верхнюю полуплоскость, записаны какие-то числа так, что для каждой чёрной клетки сумма чисел, стоящих в двух соседних с ней клетках – справа и слева, – равна сумме двух других чисел, стоящих в соседних с ней клетках – сверху и снизу. Известно число, стоящее в одной клетке <i>n</i>-й строки (крестик на рисунке), а требуется узнать число, стоящее над ним в (<i>n</i>+2)-й строке (знак вопроса на рисунке). Сколько ещё чисел, стоящих в двух нижних строках (точки на рисунке), нужно для этого знать? <div align="center"><img src="/storage/problem-media/73699/problem_73699_img_2.gif"> </div>
Последовательность натуральных чисел <i>a</i><sub>1</sub> < <i>a</i><sub>2</sub> < <i>a</i><sub>3</sub> < ... < <i>a</i><sub><i>n</i></sub> < ... такова, что каждое натуральное число либо входит в последовательность, либо представимо в виде суммы двух членов последовательности, быть может, одинаковых. Докажите, что <i>a</i><sub><i>n</i></sub> ≤ <i>n</i>² для любого <i>n</i> = 1, 2, 3, ...
Когда закончился хоккейный турнир (в один круг), оказалось, что для каждой группы команд можно найти команду (может быть, из той же группы), которая набрала в играх с командами этой группы нечётное число очков. Докажите, что в турнире участвовало чётное число команд. (Поражение – 0 очков, ничья – 1 очко, выигрыш – 2 очка.)
Можно ли расставить цифры 0, 1 и 2 в клетках листа клетчатой бумаги размером 100×100 таким образом, чтобы в каждом прямоугольнике размером 3×4, стороны которого идут по сторонам клеток, оказалось бы три нуля, четыре единицы и пять двоек?
Треугольная таблица строится по следующему правилу: в верхней её строке написано одно только натуральное число<nobr><i>a</i> > 1,</nobr>а далее под каждым<nobr>числом <i>k</i></nobr>слева пишем число<i>k</i><sup>2</sup>, а<nobr>справа —</nobr>число<nobr><i>k</i> + 1.</nobr>Докажите, что в каждой строке таблицы все числа разные.Например, при <nobr><i>a</i> = 2</nobr> вторая строка состоит из чисел 4 <nobr>и 3,</nobr> <nobr>третья —</nobr> из чисел 16, 5, 9 <nobr>и 4, </nobr> <nobr>четвёртая —</nobr> из чисел 256, 17, 25, 6, 81, 10, 16 <nobr>и 5.</nobr>
Сумма <i>n</i> положительных чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub>, ..., <i>x<sub>n</sub></i> равна 1.
Пусть <i>S</i> – наибольшее из чисел <img align="middle" src="/storage/problem-media/73692/problem_73692_img_2.gif">
Найдите наименьшее возможное значение <i>S</i>. При каких значениях <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i> оно достигается?
На прямой дано 50 отрезков. Докажите, что верно хотя бы одно из следующих утверждений:<ul class="zad"><li>некоторые 8 из этих отрезков имеют общую точку; </li><li>некоторые 8 из этих отрезков таковы, что никакие два из них не пересекаются.</li></ul>
Двое играют в следующую игру. Один называет цифру, а другой вставляет её по своему усмотрению вместо одной из звёздочек в следующей разности:<font face="Symbol"></font> – <font face="Symbol"></font>.Затем первый называет ещё одну цифру, второй ставит её, первый опять называет цифру, и так играют до тех пор, когда все звёздочки будут заменены цифрами. Первый стремится к тому, чтобы разность получилась как можно больше, а <nobr>второй —</nobr> чтобы она стала как можно меньше. Докажите, что а) второй может расставлять цифры так, чтобы полученная разность стала не больше 4000, независимо от того, какие цифры называл первый; б) первый может называть цифры так, чтобы разность стала не меньше 4000, независимо от того, куда расставля...
Пусть <i>a, b, m, n</i> – натуральные числа, причём числа <i>a</i> и <i>b</i> взаимно просты и <i>a</i> > 1.
Докажите, что если <i>a<sup>m</sup> + b<sup>m</sup></i> делится на <i>a<sup>n</sup> + b<sup>n</sup></i>, то <i>m</i> делится на <i>n</i>.
Каждая из девяти прямых разбивает квадрат на два четырёхугольника, площади которых относятся как<nobr>2 : 3.</nobr>Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.
<i>P</i> и <i>Q</i> – подмножества множества выражений вида (<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>), где <i>a<sub>i</sub></i> – натуральные числа, не превосходящие данного натурального числа <i>k</i> (таких выражений всего <i>k<sup>n</sup></i>). Для каждого элемента (<i>p</i><sub>1</sub>, ..., <i>p<sub>n</sub></i>) множества <i>P</i> и каждого элемента (<i>q</i><sub>1</sub>, ..., <i>q<sub>n</sub></i>) множества <i>Q</i> существует хотя бы один такой номер <i>m</i>, что...
Последовательность <i>x</i><sub>0</sub>, <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ... определена следующими условиями: <i>x</i><sub>0</sub> = 1, <i>x</i><sub>1</sub> = λ, для любого <i>n</i> > 1 выполнено равенство <div align="center">(α + β)<i><sup>n</sup>x<sub>n</sub></i> = α<i><sup>n</sup>x<sub>n</sub>x</i><sub>0</sub> + α<sup><i>n</i>–1</sup>β<i>x</i><sub><i>n</i>–1</sub><i>x</i><sub>1</sub> + α<sup><i>n</i>–2</sup>β<sup>2</sup>...
а) В вершинах правильного семиугольника расставлены чёрные и белые фишки. Докажите, что найдутся три фишки одного цвета,
лежащие в вершинах равнобедренного треугольника. б) Верно ли аналогичное утверждение для восьмиугольника? в) Для каких правильных <i>n</i>-угольников аналогичное верно, а для каких – нет.
Хозяин обещает работнику платить в среднем <img align="absmiddle" src="/storage/problem-media/73680/problem_73680_img_2.gif"> рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального <i>n</i> выплаченная за первые <i>n</i> дней сумма была натуральным числом, наиболее близким к <img align="absmiddle" src="/storage/problem-media/73680/problem_73680_img_3.gif"> Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.