Олимпиадные задачи из источника «1972 год» для 11 класса
Озеро имеет форму невыпуклого<nobr><i>n</i>-угольника.</nobr>Докажите, что множество точек озера, из которых видны все его берега, либо пусто, либо заполняет внутренность выпуклого<nobr><i>m</i>-угольника,</nobr>где<nobr><i>m</i>≤<i>n</i>.</nobr>
Двое играют в такую игру. Один задумывает натуральное<nobr>число <i>n</i>,</nobr>а другой задаёт вопросы типа «верно ли, что<i>n</i>не<nobr>меньше <i>x</i>»</nobr><nobr>(число <i>x</i></nobr>он может выбирать по своему усмотрению) и получает ответы «да» или «нет». Каждой возможной<nobr>стратегии <i>T</i></nobr>второго игрока сопоставим функцию<i>f</i><sub><i>T</i></sub>(<i>n</i>), равную числу вопросов (до отгадывания), если было задумано<nobr>число <i>n</i>.</nobr>Пусть, например,<nobr>стратегия <i>T</i></nobr>состоит в том, что сначала задают вопросы: «верно ли, что<i>n</i>не...
Для каждого непрямоугольного треугольника <i>T</i> обозначим через <i>T</i><sub>1</sub> треугольник, вершинами которого служат основания высот треугольника <i>T</i>; через <i>T</i><sub>2</sub> – треугольник, вершинами которого служат основания высот треугольника <i>T</i><sub>1</sub>; аналогично определим треугольники <i>T</i><sub>3</sub>, <i>T</i><sub>4</sub> и так далее. Каким должен быть треугольник <i>T</i>, чтобы
а) треугольник <i>T</i><sub>1</sub> был остроугольным?
б) в последовательности <i>T</i><sub>1</sub>, <i>T</i><sub>2</sub>, <i>T</i>...
Пусть <i>a</i> – заданное вещественное число, <i>n</i> – натуральное число, <i>n</i> > 1.
Найдите все такие <i>x</i>, что сумма корней <i>n</i>-й степени из чисел <i>x<sup>n</sup> – a<sup>n</sup></i> и 2<i>a<sup>n</sup> – x<sup>n</sup></i> равна числу <i>a</i>.
а) Каждая сторона равностороннего треугольника разбита на <i>m</i> равных частей, и через точки деления проведены прямые, параллельные сторонам, разрезавшие треугольник на <i>m</i>² маленьких треугольников. Среди вершин полученных треугольников нужно отметить <i>N</i> вершин так, чтобы ни для каких двух отмеченных вершин <i>A</i> и <i>B</i> отрезок <i>АВ</i> не был параллелен ни одной из сторон. Каково наибольшее возможное значение <i>N</i> (при заданном <i>m</i>)? б) Разделим каждое ребро тетраэдра на <i>m</i> равных частей и через точки деления проведём плоскости, параллельные граням. Среди вершин полученных многогранников отметим <i>N</i> вершин так, чтобы никакие...
Пусть <i>k</i> и <i>n</i> – натуральные числа, <i>k ≤ n</i>. Расставьте первые <i>n</i>² натуральных чисел в таблицу <i>n</i>×<i>n</i> так, чтобы в каждой строке числа шли в порядке возрастания и при этом сумма чисел в <i>k</i>-м столбце была а) наименьшей; б) наибольшей.
Когда закончился хоккейный турнир (в один круг), оказалось, что для каждой группы команд можно найти команду (может быть, из той же группы), которая набрала в играх с командами этой группы нечётное число очков. Докажите, что в турнире участвовало чётное число команд. (Поражение – 0 очков, ничья – 1 очко, выигрыш – 2 очка.)
<i>P</i> и <i>Q</i> – подмножества множества выражений вида (<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>), где <i>a<sub>i</sub></i> – натуральные числа, не превосходящие данного натурального числа <i>k</i> (таких выражений всего <i>k<sup>n</sup></i>). Для каждого элемента (<i>p</i><sub>1</sub>, ..., <i>p<sub>n</sub></i>) множества <i>P</i> и каждого элемента (<i>q</i><sub>1</sub>, ..., <i>q<sub>n</sub></i>) множества <i>Q</i> существует хотя бы один такой номер <i>m</i>, что...
Последовательность <i>x</i><sub>0</sub>, <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ... определена следующими условиями: <i>x</i><sub>0</sub> = 1, <i>x</i><sub>1</sub> = λ, для любого <i>n</i> > 1 выполнено равенство <div align="center">(α + β)<i><sup>n</sup>x<sub>n</sub></i> = α<i><sup>n</sup>x<sub>n</sub>x</i><sub>0</sub> + α<sup><i>n</i>–1</sup>β<i>x</i><sub><i>n</i>–1</sub><i>x</i><sub>1</sub> + α<sup><i>n</i>–2</sup>β<sup>2</sup>...
Хозяин обещает работнику платить в среднем <img align="absmiddle" src="/storage/problem-media/73680/problem_73680_img_2.gif"> рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального <i>n</i> выплаченная за первые <i>n</i> дней сумма была натуральным числом, наиболее близким к <img align="absmiddle" src="/storage/problem-media/73680/problem_73680_img_3.gif"> Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.
Найдите необходимые и достаточные условия, которым должны удовлетворять числа <i>a, b</i>, α и β, чтобы прямоугольник размером <i>a</i>×<i>b</i> можно было разрезать на прямоугольники размером α×β. Например, можно ли прямоугольник размером 50×60 разрезать на прямоугольники размером
а) 20×15; б) 5×8; в) 6,25×15; г) <img align="absmiddle" src="/storage/problem-media/73679/problem_73679_img_2.gif">
<i>m</i> и <i>n</i> – натуральные числа, <i>m</i> < <i>n</i>. Докажите, что <img align="absmiddle" src="/storage/problem-media/73673/problem_73673_img_2.gif">
Для каждого натурального <i>n</i> > 1 существует такое число <i>c<sub>n</sub></i>, что для любого <i>x</i> произведение синуса числа <i>x</i>, синуса числа <i>x</i> + <sup>π</sup>/<sub><i>n</i></sub>, синуса числа
<i>x</i> + <sup>2π</sup>/<sub><i>n</i></sub>, ..., наконец, синуса числа <i>x</i> + <sup>(<i>n</i> – 1)π</sup>/<sub><i>n</i></sub> равно произведению числа <i>c<sub>n</sub></i> на синус числа <i>nx</i>. Докажите это и найдите величину <i>c<sub>n</sub></i>.
<div class="catalogueproblemauthor">Автор: Л.Г.Макаров</div>Какое множество точек заполняют центры тяжести треугольников, три вершины которых лежат соответственно на трёх сторонах<i>АВ</i>,<i>ВС</i><nobr>и <i>АС</i></nobr>данного<nobr>треугольника <i>АВС</i>?</nobr>
Один из простейших многоклеточных<nobr>организмов —</nobr>водоросль<nobr>вольвокс —</nobr>представляет собой сферическую оболочку, сложенную, в основном, семиугольными, шестиугольными и пятиугольными клетками (то есть клетками, имеющими семь, шесть или пять соседних; в каждой «вершине» сходятся три клетки). Бывают экземпляры, у которых есть и четырёхугольные, и восьмиугольные клетки, но биологи заметили, что если таких «нестандартных» клеток (менее чем с пятью и более чем с семью сторонами) нет, то пятиугольных клеток<nobr>на 12</nobr>больше, чем семиугольных (всего клеток может быть несколько сотен и даже тысяч). Не можете ли вы объяснить этот факт?
Какое наибольшее число точек можно разместить<nobr>a) на</nobr>плоскости;<nobr>б)* в</nobr>пространстве так, чтобы ни один из треугольников с вершинами в этих точках не был тупоугольным? (Разумеется, в условии подразумевается, что никакие три точки не должны лежать на одной прямой – без этого ограничения можно разместить сколько угодно точек.)
Для каждого натурального <i>n</i> обозначим через <i>s</i>(<i>n</i>) сумму цифр его десятичной записи. Назовём натуральное число <i>m</i> особым, если его нельзя представить в виде <i>m = n + s</i>(<i>n</i>). (Например, число 117 не особое, поскольку 117 = 108 + <i>s</i>(108), а число 121, как нетрудно убедиться, – особое.) Верно ли, что особых чисел существует лишь конечное число?
Найдите все такие натуральные числа <i>m</i>, что произведение факториалов первых <i>m</i> нечётных натуральных чисел равно факториалу суммы первых <i>m</i> натуральных чисел.
Докажите, что при любом простом <i>p</i> <img align="middle" src="/storage/problem-media/60750/problem_60750_img_2.gif"> делится на <i>p</i>.
Найдите отношение сторон треугольника, одна из медиан которого делится вписанной окружностью на три равные части.