Олимпиадные задачи из источника «выпуск 1»

а) Существует ли бесконечная последовательность натуральных чисел, обладающая следующим свойством: ни одно из этих чисел не делится на другое, но среди каждых трёх чисел можно выбрать два, сумма которых делится на третье? б) Если нет, то как много чисел может быть в наборе, обладающем таким свойством? в) Решите ту же задачу при дополнительном условии: в набор разрешено включать только нечётные числа. Вот пример такого набора из четырёх чисел: 3, 5, 7, 107. Здесь среди трёх чисел 3, 5, 7 сумма  5 + 7  делится на 3; в тройке 5, 7, 107 сумма  107 + 5  делится на 7; в тройке 3, 7, 107 сумма  7 + 107  делится на 3; наконец, в тройке 3, 5, 107 сумма  3 + 107  делится на 5.

Найдите все такие натуральные числа <i>m</i>, что произведение факториалов первых <i>m</i> нечётных натуральных чисел равно факториалу суммы первых <i>m</i> натуральных чисел.

Для любых <i>n</i> вещественных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i> существует такое натуральное  <i>k ≤ n</i>,  что каждое из <i>k</i> чисел <i>a</i><sub><i>k</i></sub>,  ½ (<i>a<sub>k</sub> + a</i><sub><i>k</i>–1</sub>),

&frac13; (<i>a<sub>k</sub> + a</i><sub><i>k</i>–1</sub> + <i>a</i><sub><i>k</i>–2</sub>),  ...,  <sup>1</sup>/<sub><i>k</i></sub> (<i>a<sub>k</sub> + a</i><sub><i>k</i>–1</su...

Пятиугольник <i>ABCDE</i> вписан в окружность. Расстояния от точки <i>A</i> до прямых <i>BC, CD</i> и <i>DE</i> равны соответственно <i>a, b</i> и <i>c</i>.

Найдите расстояние от вершины <i>A</i> до прямой <i>BE</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка