Олимпиадные задачи по теме «Методы решения задач с параметром» - сложность 2-4 с решениями

Дан квадратный трёхчлен  <i>f</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i>.  Известно, что для любого вещественного <i>x</i> существует такое вещественное <i>y</i>, что   <i>f</i>(<i>y</i>) = <i>f</i>(<i>x</i>) + <i>y</i>.  Найдите наибольшее возможное значение <i>a</i>.

Найдите все <i>x</i>, при которых уравнение  <i>x</i>² + <i>y</i>² + <i>z</i>² + 2<i>xyz</i> = 1  (относительно <i>z</i>) имеет действительное решение при любом <i>y</i>.

Пусть<i> f</i>(<i>x</i>)<i>=x<sup>2</sup>+ax+b cos x </i>. Найдите все значения параметров<i> a </i>и<i> b </i>, при которых уравнения<i> f</i>(<i>x</i>)<i>=</i>0и<i> f</i>(<i>f</i>(<i>x</i>))<i>=</i>0имеют совпадающие непустые множества действительных корней.

Для каких<i> α </i>существует функция<i> f </i>:<i> <img src="/storage/problem-media/109912/problem_109912_img_2.gif"><img src="/storage/problem-media/109912/problem_109912_img_3.gif"><img src="/storage/problem-media/109912/problem_109912_img_2.gif"> </i>, отличная от константы, такая, что <center><i>

f</i>(<i>α</i>(<i>x+y</i>))<i>=f</i>(<i>x</i>)<i>+f</i>(<i>y</i>)<i>;? </i></center>

Рассматриваются такие квадратичные функции  <i>f</i>(<i>x</i>) = <i>ax</i>² + <i>bx + c</i>,  что  <i>a < b</i>  и  <i>f</i>(<i>x</i>) ≥ 0  для всех <i>x</i>.

Какое наименьшее значение может принимать выражение  <sup><i>a+b+c</i></sup>/<sub><i>b–a</i></sub> ?

Значение <i>a</i> подобрано так, что число корней первого из уравнений  4<sup><i>x</i></sup> – 4<sup>–<i>x</i></sup> = 2 cos <i>ax</i>,  4<sup><i>x</i></sup> + 4<sup>–<i>x</i></sup> = 2 cos <i>ax</i> + 4  равно 2007.

Сколько корней при том же <i>a</i> имеет второе уравнение?

Может ли вершина параболы  <i>у</i> = 4<i>х</i>² – 4(<i>а</i> + 1)<i>х + а</i>  лежать во второй координатной четверти при каком-нибудь значении <i>а</i>?

Доказать, что каковы бы ни были числа <i>a, b, c</i>, по крайней мере одно из уравнений

    <i>a</i> sin <i>x + b</i> cos <i>x + c</i> = 0,   2<i>a</i> tg <i>x + b</i> ctg <i>x</i> + 2<i>c</i> = 0

имеет решение.

Положительные числа <i>A, B, C</i> и <i>D</i> таковы, что система уравнений

    <i>x</i>² + <i>y</i>² = <i>A</i>,

    |<i>x| + |y| = B</i>

имеет <i>m</i> решений, а система уравнений

    <i>x</i>² + <i>y</i>² + <i>z</i>² = <i>C</i>,

    |<i>x| + |y| + |z| = D</i>

имеет <i>n</i> решений. Известно, что  <i>m > n</i> > 1.  Найдите <i>m</i> и <i>n</i>.

Про квадратный трехчлен  <i>f</i>(<i>x</i>) = <i>ax</i>² – <i>ax</i> + 1  известно, что  | <i>f</i>(<i>x</i>)| ≤ 1  при  0 ≤ <i>x</i> ≤ 1.  Найдите наибольшее возможное значение <i>а</i>.

Квадратный трехчлен  <i>y</i> = <i>ax</i>² + <i>bx + c</i>  не имеет корней и  <i>а + b + c</i> > 0.  Найдите знак коэффициента <i>с</i>.

В квадратном уравнении  <i>x</i>² + <i>px + q</i>  коэффициенты <i>p, q</i> независимо пробегают все значения от –1 до 1 включительно.

Найти множество значений, которые при этом принимает действительный корень данного уравнения.

Если при любом положительном <i>p</i> все корни уравнения  <i>ax</i>² + <i>bx + c + p</i> = 0  действительны и положительны, то коэффициент <i>a</i> равен нулю. Докажите.

Система уравнений второго порядка

   <i>x</i>² – <i>y</i>² = 0,

   (<i>x – a</i>)² + <i>y</i>² = 1

имеет, вообще говоря, четыре решения. При каких значениях <i>a</i> число решений системы уменьшается до трёх или до двух?

Найти такие отличные от нуля неравные между собой целые числа <i>a</i>, <i>b</i>, <i>c</i>, чтобы выражение  <i>x</i>(<i>x</i> – <i>a</i>)(<i>x</i> – <i>b</i>)(<i>x</i> – <i>c</i>) + 1  разлагалось в произведение двух многочленов (ненулевой степени) с целыми коэффициентами.

Решить систему уравнений:<div align="CENTER"> $\displaystyle \left{\vphantom{ \begin{array}{rcl} (x^3+y^3)(x^2+y^2)&=& 2b^5,\ x+y&=& b. \end{array} }\right.$$\displaystyle \begin{array}{rcl} (x^3+y^3)(x^2+y^2)&=& 2b^5,\ x+y&=& b. \end{array}$ </div>

Решить уравнение  <img width="98" height="39" align="MIDDLE" border="0" src="/storage/problem-media/76453/problem_76453_img_2.gif"> = <i>x</i>.

Решить систему уравнений:

   3<i>xyz – x</i>³ – <i>y</i>³ – <i>z</i>³ = <i>b</i>³,

   <i>x + y + z</i> = 2<i>b</i>,

   <i>x</i>² + <i>y</i>² + <i>z</i>² = <i>b</i>².

Решить систему:

   <i>x + y + z = a,

   x</i>² + <i>y</i>² + <i>z</i>² = <i>a</i>²,

   <i>x</i>³ + <i>y</i>³ + <i>z</i>³ = <i>a</i>³.

Решить систему уравнений:

   <i>x + y = a,

   x</i><sup>5</sup> + <i>y</i><sup>5</sup> = <i>b</i><sup>5</sup>.

Решить систему уравнений:

  <i>x</i>² + <i>y</i>² – 2<i>z</i>² = 2<i>a</i>²,

  <i>x + y</i> + 2<i>z</i> = 4(<i>a</i>² + 1),

  <i>z</i>² – <i>xy</i> = <i>a</i>².

Пусть <i>a</i> – заданное вещественное число, <i>n</i> – натуральное число,  <i>n</i> > 1.

Найдите все такие <i>x</i>, что сумма корней <i>n</i>-й степени из чисел  <i>x<sup>n</sup> – a<sup>n</sup></i>  и  2<i>a<sup>n</sup> – x<sup>n</sup></i>  равна числу <i>a</i>.

Исследуйте, сколько решений имеет система уравнений

    <i>x</i>² + <i>y</i>² + <i>xy = a</i>,

    <i>x</i>² – <i>y</i>² = <i>b</i>,

где <i>а</i> и <i>b</i> – некоторые данные действительные числа.

Пусть <i>p</i> – произвольное вещественное число. Найдите все такие <i>x</i>, что сумма кубических корней из чисел  1 – <i>x</i>  и  1 + <i>x</i>  равна <i>p</i>.

Исследуйте системы уравнений: а) <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_2.gif"><img width="129" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_3.gif"> б) <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_2.gif"><img width="129" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_4.gif"> в) <img width="20" height="73" align="MIDDLE" borde...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка