Олимпиадные задачи по теме «Методы решения задач с параметром» для 9 класса
Методы решения задач с параметром
НазадДан квадратный трёхчлен <i>f</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i>. Известно, что для любого вещественного <i>x</i> существует такое вещественное <i>y</i>, что <i>f</i>(<i>y</i>) = <i>f</i>(<i>x</i>) + <i>y</i>. Найдите наибольшее возможное значение <i>a</i>.
Найдите все <i>x</i>, при которых уравнение <i>x</i>² + <i>y</i>² + <i>z</i>² + 2<i>xyz</i> = 1 (относительно <i>z</i>) имеет действительное решение при любом <i>y</i>.
Пусть<i> f</i>(<i>x</i>)<i>=x<sup>2</sup>+ax+b cos x </i>. Найдите все значения параметров<i> a </i>и<i> b </i>, при которых уравнения<i> f</i>(<i>x</i>)<i>=</i>0и<i> f</i>(<i>f</i>(<i>x</i>))<i>=</i>0имеют совпадающие непустые множества действительных корней.
Может ли вершина параболы <i>у</i> = 4<i>х</i>² – 4(<i>а</i> + 1)<i>х + а</i> лежать во второй координатной четверти при каком-нибудь значении <i>а</i>?
Доказать, что каковы бы ни были числа <i>a, b, c</i>, по крайней мере одно из уравнений
<i>a</i> sin <i>x + b</i> cos <i>x + c</i> = 0, 2<i>a</i> tg <i>x + b</i> ctg <i>x</i> + 2<i>c</i> = 0
имеет решение.
Про квадратный трехчлен <i>f</i>(<i>x</i>) = <i>ax</i>² – <i>ax</i> + 1 известно, что | <i>f</i>(<i>x</i>)| ≤ 1 при 0 ≤ <i>x</i> ≤ 1. Найдите наибольшее возможное значение <i>а</i>.
Квадратный трехчлен <i>y</i> = <i>ax</i>² + <i>bx + c</i> не имеет корней и <i>а + b + c</i> > 0. Найдите знак коэффициента <i>с</i>.
При каких значениях <i>m</i> уравнения <i>mx</i> – 1000 = 1001 и 1001<i>x = m</i> – 1000<i>x</i> имеют общий корень?
В квадратном уравнении <i>x</i>² + <i>px + q</i> коэффициенты <i>p, q</i> независимо пробегают все значения от –1 до 1 включительно.
Найти множество значений, которые при этом принимает действительный корень данного уравнения.
Если при любом положительном <i>p</i> все корни уравнения <i>ax</i>² + <i>bx + c + p</i> = 0 действительны и положительны, то коэффициент <i>a</i> равен нулю. Докажите.
Найти такие отличные от нуля неравные между собой целые числа <i>a</i>, <i>b</i>, <i>c</i>, чтобы выражение <i>x</i>(<i>x</i> – <i>a</i>)(<i>x</i> – <i>b</i>)(<i>x</i> – <i>c</i>) + 1 разлагалось в произведение двух многочленов (ненулевой степени) с целыми коэффициентами.
Решить уравнение <img width="98" height="39" align="MIDDLE" border="0" src="/storage/problem-media/76453/problem_76453_img_2.gif"> = <i>x</i>.
Решить систему уравнений:
3<i>xyz – x</i>³ – <i>y</i>³ – <i>z</i>³ = <i>b</i>³,
<i>x + y + z</i> = 2<i>b</i>,
<i>x</i>² + <i>y</i>² + <i>z</i>² = <i>b</i>².
Решить систему:
<i>x + y + z = a,
x</i>² + <i>y</i>² + <i>z</i>² = <i>a</i>²,
<i>x</i>³ + <i>y</i>³ + <i>z</i>³ = <i>a</i>³.
Решить систему уравнений:
<i>x + y = a,
x</i><sup>5</sup> + <i>y</i><sup>5</sup> = <i>b</i><sup>5</sup>.
Решить систему уравнений:
<i>x</i>² + <i>y</i>² – 2<i>z</i>² = 2<i>a</i>²,
<i>x + y</i> + 2<i>z</i> = 4(<i>a</i>² + 1),
<i>z</i>² – <i>xy</i> = <i>a</i>².
Исследуйте, сколько решений имеет система уравнений
<i>x</i>² + <i>y</i>² + <i>xy = a</i>,
<i>x</i>² – <i>y</i>² = <i>b</i>,
где <i>а</i> и <i>b</i> – некоторые данные действительные числа.
Пусть <i>p</i> – произвольное вещественное число. Найдите все такие <i>x</i>, что сумма кубических корней из чисел 1 – <i>x</i> и 1 + <i>x</i> равна <i>p</i>.
Исследуйте системы уравнений: а) <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_2.gif"><img width="129" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_3.gif"> б) <img width="20" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_2.gif"><img width="129" height="73" align="MIDDLE" border="0" src="/storage/problem-media/61348/problem_61348_img_4.gif"> в) <img width="20" height="73" align="MIDDLE" borde...
Решите системы уравнений. Для каждой из них выясните, при каких значениях параметров система не имеет решений, а при каких имеет бесконечно много решений. а) <img width="18" height="54" align="MIDDLE" border="0" src="/storage/problem-media/61344/problem_61344_img_2.gif"><img width="130" height="54" align="MIDDLE" border="0" src="/storage/problem-media/61344/problem_61344_img_3.gif">б) <img width="18" height="54" align="MIDDLE" border="0" src="/storage/problem-media/61344/problem_61344_img_2.gif"><img width="138" height="54" align="MIDDLE" border="0" src="/storage/problem-media/...
Решите уравнение$\sqrt{a+\sqrt{a+\sqrt{a+x}}}$=<i>x</i>.
Найдите все действительные значения <i>a</i> и <i>b</i>, при которых уравнения <i>x</i>³ + <i>ax</i>² + 18 = 0, <i>x</i>³ + <i>bx</i> + 12 = 0 имеют два общих корня, и определите эти корни.
Найдите все значения параметра <i>a</i>, при которых корни <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub> многочлена <i>x</i><sup>3</sup> – 6<i>x</i><sup>2</sup> + <i>ax + a</i> удовлетворяют равенству
(<i>x</i><sub>1</sub> – 3)<sup>3</sup> + (<i>x</i><sub>2</sub> – 3)<sup>3</sup> + (<i>x</i><sub>3</sub> – 3)<sup>3</sup> = 0.
При каком положительном значении <i>p</i> уравнения 3<i>x</i>² – 4<i>px</i> + 9 = 0 и <i>x</i>² – 2<i>px</i> + 5 = 0 имеют общий корень?
При каких <i>a</i> и <i>b</i> многочлен <i>P</i>(<i>x</i>) = (<i>a + b</i>)<i>x</i><sup>5</sup> + <i>abx</i>² + 1 делится на <i>x</i>² – 3<i>x</i> + 2?