Олимпиадные задачи по теме «Алгебраические уравнения и системы уравнений» для 2-10 класса - сложность 1-2 с решениями
Алгебраические уравнения и системы уравнений
НазадРешите уравнение: <img align="absmiddle" src="/storage/problem-media/116928/problem_116928_img_2.gif">.
На доске записан ряд из чисел и звёздочек: 5, *, *, *, *, *, *, 8. Замените звёздочки числами так, чтобы сумма каждых трёх чисел, стоящих подряд, равнялась 20.
Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке?<div align="center"><img src="/storage/problem-media/116854/problem_116854_img_2.gif"></div>
Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?
Какие значения может принимать выражение (<i>x – y</i>)(<i>y – z</i>)(<i>z – x</i>), если известно, что <img align="absmiddle" src="/storage/problem-media/116451/problem_116451_img_2.gif"> ?
Найдите все неотрицательные решения системы уравнений:
<i>x</i>³ = 2<i>y</i>² – <i>z</i>,
<i>y</i>³ = 2<i>z</i>² – <i>x</i>,
<i>z</i>³ = 2<i>x</i>² – <i>y</i>.
Коля и Вася за ноябрь получили по 15 оценок: тройки, четвёрки и пятёрки. При этом Коля получил пятёрок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, а троек столько же, сколько Вася пятёрок. Оказалось, что средний балл за ноябрь у мальчиков одинаковый. Сколько троек получил Коля в ноябре?
Пусть <i>a, b, c, d, e</i> и <i>f</i> – некоторые числа, причём <i>ace</i> ≠ 0. Известно, что значения выражений |<i>ax + b</i>| + |<i>cx + d</i>| и |<i>ex + f</i> | равны при всех значениях <i>x</i>.
Докажите, что <i>ad = bc</i>.
Решите уравнение {(<i>x</i> + 1)³} = <i>x</i>³.
Известно, что уравнение <i>ax</i><sup>5</sup> + <i>bx</i><sup>4</sup> + <i>c</i> = 0 имеет три различных корня. Докажите, что уравнение <i>cx</i><sup>5</sup> + <i>bx + a</i> = 0 также имеет три различных корня.
Найти все действительные решения системы уравнений
<i>x</i>² + <i>y</i>² + <i>z</i>² = 1,
<i>x</i>³ + <i>y</i>³ + <i>z</i>³ = 1.
Решить систему уравнений:
<i>x</i><sub>1</sub> + 12<i>x</i><sub>2</sub> = 15,
<i>x</i><sub>1</sub> – 12<i>x</i><sub>2</sub> + 11<i>x</i><sub>3</sub> = 2,
<i>x</i><sub>1</sub> – 11<i>x</i><sub>3</sub> + 10<i>x</i><sub>4</sub> = 2,
<i>x</i><sub>1</sub> – 10<i>x</i><sub>4</sub> + 9<i>x</i><sub>5</sub> = 2,
<i>x</i><sub>1</sub> – 9<i>x</i><sub>5</sub> + 8<i>x</i><sub>6</sub> = 2,
<i>x</i><sub>1</sub> – 8&...
Решить систему уравнений с <i>n</i> неизвестными <img align="absmiddle" src="/storage/problem-media/108979/problem_108979_img_2.gif">
На базаре продаются рыбки, большие и маленькие. Сегодня три больших и одна маленькая стоят вместе столько же, сколько пять больших вчера. А две большие и одна маленькая сегодня стоят вместе столько же, сколько три больших и одна маленькая вчера. Можно ли по этим данным выяснить, что дороже: одна большая и две маленьких сегодня, или пять маленьких вчера?
Пусть <i>f</i>(<i>x</i>) = <i>x</i>² + 12<i>x</i> + 30. Решите уравнение <i>f</i>(<i>f</i>(<i>f</i>(<i>f</i>(<i>f</i>(<i>x</i>))))) = 0.
Решите уравнение (<i>x</i> + 1)<sup>63</sup> + (<i>x</i> + 1)<sup>62</sup>(<i>x</i> – 1) + (<i>x</i> + 1)<sup>61</sup>(<i>x</i> – 1)² + ... + (<i>x</i> – 1)<sup>63</sup> = 0.
Решите систему уравнений:
<i>x</i>² + 4sin²<i>y</i> – 4 = 0,
cos <i>x</i> – 2cos²<i>y</i> – 1 = 0.
Купец продаёт двух коней с сёдлами, причём цена одного седла 120 рублей, а другого – 25 рублей. Первый конь с хорошим седлом втрое дороже другого с дешёвым, а другой конь с хорошим седлом вдвое дешевле первого коня с дешёвым. Какова цена каждого коня?
Карлсон написал дробь <sup>10</sup>/<sub>97</sub>. Малыш может:
1) прибавлять любое натуральное число к числителю и знаменателю одновременно,
2) умножать числитель и знаменатель на одно и то же натуральное число. Сможет ли Малыш с помощью этих действий получить дробь,
а) равную ½? б) равную 1?
Решите систему уравнений:
<i>xy</i>(<i>x + y</i>) = 30
<i>x</i>³ + <i>y</i>³ = 35.
Решите систему уравнений:
<sup>1</sup>/<sub><i>x</i></sub> + <sup>1</sup>/<sub><i>y</i></sub> = 6,
<sup>1</sup>/<sub><i>y</i></sub> + <sup>1</sup>/<sub><i>z</i></sub> = 4,
<sup>1</sup>/<sub><i>z</i></sub> + <sup>1</sup>/<sub><i>x</i></sub> = 5.
Решить уравнение [<i>x</i>³] + [<i>x</i>²] + [<i>x</i>] = {<i>x</i>} − 1.
Найдите все действительные корни уравнения (<i>x</i> + 1)<sup>21</sup> + (<i>x</i> + 1)<sup>20</sup>(<i>x</i> – 1) + (<i>x</i> + 1)<sup>19</sup>(<i>x</i> – 1)² + ... + (<i>x</i> – 1)<sup>21</sup> = 0.
Сто человек ответили на вопрос: "Будет ли новый президент лучше прежнего?" Из них <i>a</i> человек считают, что будет лучше, <i>b</i> – что будет такой же, и <i>c</i> – что будет хуже. Социологи построили два показателя "оптимизма" опрошенных: <i>m = a + <sup>b</sup></i>/<sub>2</sub> и <i>n = a – c</i>. Оказалось, что <i>m</i> = 40. Найдите <i>n</i>.
У кассира было 30 монет: 10, 15 и 20 копеек на сумму 5 рублей. Докажите, что 20-копеечных монет у него было больше, чем 10-копеечных.