Олимпиадные задачи из источника «Окружная олимпиада (Москва)» для 11 класса - сложность 1-2 с решениями

В правильной четырёхугольной усечённой пирамиде середина <i>N</i> ребра <i>B</i><sub>1</sub><i>C</i><sub>1</sub> верхней грани <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> соединена с серединой <i>M</i> ребра <i>AB</i> нижней грани <i>ABCD</i>. Прямые <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>AB</i> не лежат в одной плоскости. Докажите, что проекции рёбер <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>AB</i> на прямую <i>MN</i> равн...

В десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?

Точка <i>Х</i> расположена на диаметре <i>АВ</i> окружности радиуса <i>R</i>. Точки <i>K</i> и <i>N</i> лежат на окружности в одной полуплоскости относительно <i>АВ</i>,

а  ∠<i>KXA</i> = ∠<i>NXB</i> = 60°.  Найдите длину отрезка <i>KN</i>.

Функция <i>f</i>(<i>x</i>) такова, что для всех значений <i>x</i> выполняется равенство  <i>f</i>(<i>x</i> + 1) = <i>f</i>(<i>x</i>) + 2<i>x</i> + 3.  Известно, что  <i>f</i>(0) = 1.  Найдите <i>f</i>(2012).

Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно?

Известно, что  tg <i>A</i> + tg <i>B</i> = 2  и  ctg <i>A</i> + ctg <i>B</i> = 3.  Найдите  tg (<i>A + B</i>).

Какое наименьшее количество клеток требуется отметить на шахматной доске, чтобы каждая клетка доски (отмеченная или неотмеченная) граничила по стороне хотя бы с одной отмеченной клеткой?

Известно, что <i>A</i> – наибольшее из чисел, являющихся произведением нескольких натуральных чисел, сумма которых равна 2011.

На какую наибольшую степень тройки делится число <i>A</i>?

Две окружности касаются внешним образом. <i>A</i> – точка касания их общей внешней касательной с одной из окружностей, <i>B</i> – точка той же окружности, диаметрально противоположная точке <i>A</i>. Докажите, что длина касательной, проведённой из точки <i>B</i> ко второй окружности, равна диаметру первой окружности.

Длина ребра правильного тетраэдра равна <i>a</i>. Через одну из вершин тетраэдра проведено треугольное сечение.

Докажите, что периметр <i>P</i> этого треугольника удовлетворяет неравенству  <i>P</i> > 2<i>a</i>.

На доске записали 20 первых чисел натурального ряда. Когда одно из чисел стёрли, то оказалось, что среди оставшихся чисел одно является средним арифметическим всех остальных. Найдите все числа, которые могли быть стёрты.

Про углы треугольника <i>ABC</i> известно, что   <img align="absmiddle" src="/storage/problem-media/116493/problem_116493_img_2.gif">   и   <img align="absmiddle" src="/storage/problem-media/116493/problem_116493_img_3.gif"> .   Найдите величину угла <i>C</i>.

Докажите, что уравнение  <i>l</i>² + <i>m</i>² = <i>n</i>² + 3  имеет бесконечно много решений в натуральных числах.

Прямая пересекает график функции  <i>y = x</i>²  в точках с абсциссами <i>x</i><sub>1</sub> и <i>x</i><sub>2</sub>, а ось абсцисс – в точке с абсциссой <i>x</i><sub>3</sub>. Докажите, что   <img align="absmiddle" src="/storage/problem-media/116488/problem_116488_img_2.gif"> .

Задайте формулой какую-нибудь квадратичную функцию, график которой пересекает оси координат в вершинах прямоугольного треугольника.

В футбольном турнире участвовало 20 команд (каждая сыграла с каждой из остальных по одному матчу). Могло ли в результате оказаться так, что каждая из команд-участниц выиграла столько же матчей, сколько сыграла вничью?

При каких значениях <i>c</i> числа  sin α  и  cos α  являются корнями квадратного уравнения  5<i>x</i>² – 3<i>x + c</i> = 0  (α – некоторый угол)?

В первый день Маша собрала на 25% грибов меньше, чем Вася, а во второй – на 20% больше, чем Вася. За два дня Маша собрала грибов на 10% больше, чем Вася. Какое наименьшее количество грибов они могли собрать вместе?

Найдите все положительные корни уравнения  <i>x<sup>x</sup> + x</i><sup>1–<i>x</i></sup> = <i>x</i> + 1.

Точки <i>А</i><sub>1</sub> и <i>А</i><sub>3</sub> расположены по одну сторону от плоскости α, а точки <i>А</i><sub>2</sub> и <i>А</i><sub>4</sub> – по другую сторону. Пусть <i>В</i><sub>1</sub>, <i>В</i><sub>2</sub>, <i>В</i><sub>3</sub> и <i>В</i><sub>4</sub> – точки пересечения отрезков <i>А</i><sub>1</sub>А<sub>2</sub>, <i>А</i><sub>2</sub><i>А</i><sub>3</sub>, <i>А</i><sub>3</sub><i>А</i><sub>4</sub> и <i>А</i><sub>4</sub><i>А</i>&l...

Обозначим две какие-нибудь цифры буквами<i> А </i>и<i> Х </i>. Докажите, что шестизначное число<i> ХАХАХА </i>делится на 7 без остатка.

На рисунке изображены графики трёх квадратных трёчленов.

Можно ли подобрать такие числа <i>a, b</i> и <i>c</i>, чтобы это были графики трёхчленов  <i>ax</i>² + <i>bx + c,  bx</i>² + <i>cx + a</i>  и  <i>cx</i>² + <i>ax + b</i>? <div align="center"><img src="/storage/problem-media/109457/problem_109457_img_2.gif"></div>

Функция<i> f </i>такова, что для любых положительных<i> x </i>и<i> y </i>выполняется равенство<i> f</i>(<i>xy</i>)<i> = f</i>(<i>x</i>)<i> + f</i>(<i>y</i>). Найдите<i> f</i>(2007), если<i> f</i>(<i><img src="/storage/problem-media/109438/problem_109438_img_2.gif"></i>)<i> = </i>1.

Что больше:   <img align="middle" src="/storage/problem-media/109435/problem_109435_img_2.gif">   или   <img align="middle" src="/storage/problem-media/109435/problem_109435_img_3.gif"> ?

В кубе <i>АВСDА</i><sub>1</sub><i>В</i><sub>1</sub><i>С</i><sub>1</sub><i>D</i><sub>1</sub> площадь ортогональной проекции грани <i>АА</i><sub>1</sub><i>В</i><sub>1</sub><i>В</i> на плоскость, перпендикулярную диагонали <i>АС</i><sub>1</sub>, равна 1.

Найдите площадь ортогональной проекции куба на эту плоскость.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка