Олимпиадные задачи из источника «2012 год»
В правильной четырёхугольной усечённой пирамиде середина <i>N</i> ребра <i>B</i><sub>1</sub><i>C</i><sub>1</sub> верхней грани <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub> соединена с серединой <i>M</i> ребра <i>AB</i> нижней грани <i>ABCD</i>. Прямые <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>AB</i> не лежат в одной плоскости. Докажите, что проекции рёбер <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>AB</i> на прямую <i>MN</i> равн...
В десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?
Точка <i>Х</i> расположена на диаметре <i>АВ</i> окружности радиуса <i>R</i>. Точки <i>K</i> и <i>N</i> лежат на окружности в одной полуплоскости относительно <i>АВ</i>,
а ∠<i>KXA</i> = ∠<i>NXB</i> = 60°. Найдите длину отрезка <i>KN</i>.
Функция <i>f</i>(<i>x</i>) такова, что для всех значений <i>x</i> выполняется равенство <i>f</i>(<i>x</i> + 1) = <i>f</i>(<i>x</i>) + 2<i>x</i> + 3. Известно, что <i>f</i>(0) = 1. Найдите <i>f</i>(2012).
Туристическая фирма провела акцию: "Купи путевку в Египет, приведи четырёх друзей, которые также купят путевку, и получи стоимость путевки обратно". За время действия акции 13 покупателей пришли сами, остальных привели друзья. Некоторые из них привели ровно по четыре новых клиента, а остальные 100 не привели никого. Сколько туристов отправились в Страну Пирамид бесплатно?
Известно, что tg <i>A</i> + tg <i>B</i> = 2 и ctg <i>A</i> + ctg <i>B</i> = 3. Найдите tg (<i>A + B</i>).
Даны <i>n</i> + 1 попарно различных натуральных чисел, меньших 2<i>n</i> (<i>n</i> > 1).
Докажите, что среди них найдутся три таких числа, что сумма двух из них равна третьему.
Дана равнобокая трапеция <i>ABCD</i> (<i>AD || BC</i>). На дуге <i>AD</i> (не содержащей точек <i>B</i> и <i>C</i>) описанной окружности этой трапеции произвольно выбрана точка <i>M</i>. Докажите, что основания перпендикуляров, опущенных из вершин <i>A</i> и <i>D</i> на отрезки <i>BM</i> и <i>CM</i>, лежат на одной окружности.
Вася придумал новую шахматную фигуру "супер-слон". Один "супер-слон" (обозначим его <i>A</i>) бьёт другого (обозначим его <i>B</i>), если они стоят на одной диагонали, между ними нет фигур, и следующая по диагонали клетка за "супер-слоном" <i>B</i> свободна. Например, на рисунке фигура <i>a</i> бьёт фигуру <i>b</i>, но не бьёт ни одну из фигур <i>c, d, e, f</i> и <i>g</i>. <div align="center"><img src="/storage/problem-media/116871/problem_116871_img_2.gif"></div>Какое наибольшее количество "супер-слонов" можно поставить на шахматную доску так, чтобы каждый из них бился хотя бы одним другим?
На сторонах <i>AB</i> и <i>BC</i> равностороннего треугольника <i>ABC</i> отмечены точки <i>L</i> и <i>K</i> соответственно, <i>M</i> – точка пересечения отрезков <i>AK</i> и <i>CL</i>. Известно, что площадь треугольника <i>AMC</i> равна площади четырёхугольника <i>LBKM</i>. Найдите угол <i>AMC</i>.
Квадратный трёхчлен <i>ax</i>² + 2<i>bx + c</i> имеет два различных корня, а квадратный трёхчлен <i>a</i>²<i>x</i>² + 2<i>b</i>²<i>x + c</i>² корней не имеет.
Докажите, что у первого трёхчлена корни разного знака.
Расставьте в кружках, расположенных в вершинах квадрата и в его центре, пять натуральных чисел так, чтобы каждые два числа, соединенные отрезком, имели общий делитель, больший 1, а любые два числа, не соединенные отрезком, были бы взаимно просты. <div align="center"><img src="/storage/problem-media/116868/problem_116868_img_2.gif"></div>
На полянке собрались божьи коровки. Если у божьей коровки на спине шесть точек, то она всегда говорит правду, а если четыре точки – то она всегда лжёт, а других божьих коровок на полянке не было. Первая божья коровка сказала: "У каждой из нас одинаковое количество точек на спине". Вторая сказала: "У всех вместе на спинах 30 точек". – "Нет, у всех вместе 26 точек на спинах", – возразила третья. "Из этих троих ровно одна сказала правду", – заявила каждая из остальных божьих коровок. Сколько всего божьих коровок собралось на полянке?
Ребёнок поставил четыре одинаковых кубика так, что буквы на сторонах кубиков, обращённых к нему, образуют его имя (см. рисунок). Нарисуйте, как расположены остальные буквы на данной развёртке кубика и определите, как зовут ребёнка. <div align="center"><img src="/storage/problem-media/116866/problem_116866_img_2.gif"></div>
На доске записан ряд из чисел и звёздочек: 5, *, *, *, *, *, *, 8. Замените звёздочки числами так, чтобы сумма каждых трёх чисел, стоящих подряд, равнялась 20.
На блюде лежали 15 плюшек. Карлсон взял себе в три раза больше плюшек, чем Малыш, а собака Малыша Бимбо – в три раза меньше, чем Малыш. Сколько плюшек осталось на блюде?
Разрежьте данную фигуру на три одинаковые части.<div align="center"><img src="/storage/problem-media/116863/problem_116863_img_2.gif"></div>
Перед гномом лежат три кучки бриллиантов: 17, 21 и 27 штук. В одной из кучек лежит один фальшивый бриллиант. Все бриллианты имеют одинаковый вид, все настоящие бриллианты весят одинаково, а фальшивый отличается от них по весу. У гнома есть чашечные весы без гирь. Гному надо за одно взвешивание найти кучку, в которой все бриллианты настоящие. Как это сделать?
На доске записано число 61. Каждую минуту число стирают с доски и записывают на это место произведение его цифр, увеличенное на 13. После первой минуты на доске записано 19 (6·1 + 13 = 19). Какое число можно будет прочитать на доске через час?
Одну сторону прямоугольника увеличили в 3 раза, а другую уменьшили в 2 раза и получили квадрат.
Чему равна сторона квадрата, если площадь прямоугольника 54 м²?
Разрежьте фигуру, изображенную на рисунке, на три части так, чтобы в каждой из частей была снежинка и из этих частей можно было бы сложить квадрат.<div align="center"><img src="/storage/problem-media/116859/problem_116859_img_2.gif"></div>
На карточках записаны числа 415, 43, 7, 8, 74, 3 (см. рисунок). Расположите карточки в ряд так, чтобы получившееся десятизначное число было наименьшим из возможных. <div align="center"><img src="/storage/problem-media/116858/problem_116858_img_2.gif"></div>
Точка <i>K</i> – середина гипотенузы <i>АВ</i> прямоугольного треугольника <i>АВС</i>. На катетах <i>АС</i> и <i>ВС</i> выбраны точки <i>М</i> и <i>N</i> соответственно так, что угол <i>МKN</i> – прямой. Докажите, что из отрезков <i>АМ, ВN</i> и <i>MN</i> можно составить прямоугольный треугольник.
Десять футбольных команд сыграли каждая с каждой по одному разу. В результате у каждой команды оказалось ровно по <i>х</i> очков.
Каково наибольшее возможное значение <i>х</i>? (Победа – 3 очка, ничья – 1 очко, поражение – 0.)
В трапеции <i>ABCD</i> основание <i>BC</i> в два раза меньше основания <i>AD</i>. Из вершины <i>D</i> опущен перпендикуляр <i>DE</i> на сторону <i>AB</i>. Докажите, что <i>СЕ = CD</i>.