Олимпиадные задачи из источника «2007 год»
На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые (которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой. Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе?
Коля и его сестра Маша пошли в гости. Пройдя четверть пути, Коля вспомнил, что они забыли дома подарок и повернул обратно, а Маша пошла дальше. Маша пришла в гости через 20 минут после выхода из дома. На сколько минут позже пришёл в гости Коля, если известно, что они все время шли с одинаковыми скоростями?
Четырехзначное число начинается с цифры 6. Эту цифру переставили в конец числа. Полученное число оказалось на 1152 меньше исходного. Найдите исходное число.
Разделите круг тремя прямолинейными разрезами на: а) 4 части; б) 5 частей; в) 6 частей; г) 7 частей.
Петя и Вася участвовали в велогонке. Все участники стартовали одновременно и показали на финише различное время. Петя финишировал сразу после Васи и оказался на десятом месте. Сколько человек участвовало в гонке, если Вася был пятнадцатым с конца?
Люди заходят с улицы в метро равномерно. Пройдя через турникеты, они оказываются в небольшом зале перед эскалаторами. Двери на вход только что открылись, и сначала зал перед эскалаторами был пустой, а на спуск работал только один эскалатор. Один эскалатор не справлялся с толпой, так что за 6 минут зал наполовину заполнился. Тогда включили на спуск второй эскалатор, но толпа продолжала увеличиваться – ещё через 15 минут зал был полон. За какое время зал опустеет, если включить третий эскалатор?
Маша считает, что два арбуза тяжелее трёх дынь, Аня считает, что три арбуза тяжелее четырёх дынь. Известно, что одна из девочек права, а другая ошибается. Верно ли, что 12 арбузов тяжелее 18 дынь? (Считается, что все арбузы весят одинаково и все дыни весят одинаково.)
За 2 секунды мама-кенгуру делает три прыжка, а кенгурёнок – пять прыжков. Длина прыжка мамы-кенгуру 6 метров, а длина прыжка кенгурёнка в 3 раза меньше. Мама с кенгуренком играют в догонялки: кенгурёнок отпрыгивает на 12 прыжков, после чего мама начинает его догонять, а он прыгает дальше. За какое время мама его догонит?
Вырежьте из фигуры, изображенной на рисунке, одну клетку и разрежьте оставшуюся фигуру на четыре равные части. <img src="/storage/problem-media/109474/problem_109474_img_2.gif">
Дима пишет подряд натуральные числа: 123456789101112... .
На каких местах, считая от начала, в первый раз будут стоять три цифры 5 подряд?
На клетчатой бумаге нарисован квадрат со стороной5клеток. Его требуется разбить на 5 частей одинаковой площади, проводя отрезки внутри квадрата только по линиям сетки. Может ли оказаться так, что суммарная длина проведенных отрезков не превосходит 16 клеток?
Подойдя к незнакомому одноподъездному дому и думая, что на каждом этаже по шесть квартир, Аня решила, что нужная ей квартира находится на четвёртом этаже. Поднявшись на четвёртый этаж, Аня обнаружила, что нужная ей квартира действительно находится там, несмотря на то, что на каждом этаже – по семь квартир. Каким мог быть номер квартиры, в которую шла Аня?
На столе лежат в ряд пять монет: средняя – орлом вверх, а остальные – решкой вверх. За одну операцию разрешается одновременно перевернуть ровно три монеты, лежащие рядом. Можно ли, выполнив такую операцию несколько раз, добиться того, чтобы все пять монет лежали орлом вверх?
После того, как Наташа съела треть персиков из банки, уровень компота понизился на одну четверть.
На сколько (относительно нового уровня) понизится уровень компота, если съесть все оставшиеся персики?
В равенстве (<i>ay<sup>b</sup></i>)<sup><i>c</i></sup> = – 64<i>y</i><sup>6</sup> замените <i>a, b</i> и <i>c</i> целыми числами, отличными от 1, так, чтобы получилось тождество.
На некоторых клетках шахматной доски лежит по конфете. Известно, что в каждой строке, в каждом столбце и в каждой диагонали (любой длины, даже состоящей из одной клетки) лежит чётное количество конфет (возможно, ни одной). Какое максимальное количество конфет может лежать на доске?
На стороне<i> AC </i>треугольника<i> ABC </i>взята точка<i> D </i>так, что<i> AD:DC=</i>1<i>:</i>2. Докажите, что у треугольников<i> ADB </i>и<i> CDB </i>есть по равной медиане.
Мальчик стоит на автобусной остановке и мёрзнет, а автобуса нет. Ему хочется пройтись до следующей остановки. Мальчик бегает вчетверо медленнее автобуса и может увидеть автобус на расстоянии 2 км. До следующей остановки ровно километр. Имеет ли смысл идти, или есть риск упустить автобус?
Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции.
Числа <i>a, b</i> и <i>c</i> отличны от нуля и выполняются равенства: <i>a + <sup>b</sup></i>/<i><sub>c</sub> = b + <sup>c</sup></i>/<i><sub>a</sub> = c + <sup>a</sup></i>/<sub><i>b</i></sub> = 1. Докажите, что <i>ab + bc + ca</i> = 0.
Из натурального числа вычли сумму его цифр и получили 2007. Каким могло быть исходное число?
В выпуклом пятиугольнике<i> ABCDE </i><i> <img src="/storage/problem-media/109461/problem_109461_img_2.gif"> A=<img src="/storage/problem-media/109461/problem_109461_img_2.gif"> B=<img src="/storage/problem-media/109461/problem_109461_img_2.gif"> D=</i>90<i><sup>o</sup> </i>. Найдите угол<i> ADB </i>, если известно, что в данный пятиугольник можно вписать окружность.
<img align="right" src="/storage/problem-media/109460/problem_109460_img_2.gif">Дан набор одинаковых правильных пятиугольников, при вершинах каждого из которых записаны натуральные числа от 1 до 5, как показано на рисунке. Пятиугольники можно поворачивать и переворачивать. Их сложили в стопку (вершина к вершине), и оказалось, что при каждой из пяти вершин суммы чисел одинаковы. Сколько пятиугольников могло быть в этой стопке?
В выпуклом четырехугольнике <i>ABCD</i> выполняются равенства: ∠<i>CBD</i> = ∠<i>CAB</i> и ∠<i>ACD</i> = ∠<i>ADB</i>.
Докажите, что из отрезков <i>BC, AD</i> и <i>AC</i> можно сложить прямоугольный треугольник.
Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал <sup>1</sup>/<sub>7</sub> часть от общего количества. Сколько было школьников?